|
1. Pagga, U.; Brown, D., The degradation of dyestuffs. 2. Behavior of dyestuffs in aerobic biodegradation tests. Chemosphere 1986, 15, (4), 479-491. 2. Legrini, O.; Oliveros, E.; Braun, A. M., Photochemical processes for water-treatment. Chem. Rev. 1993, 93, (2), 671-698. 3. Wang, J. M.; Huang, C. P.; Allen, H. E.; Cha, D. K.; Kim, D. W., Adsorption characteristics of dye onto sludge particulates. Journal of Colloid and Interface Science 1998, 208, (2), 518-528. 4. Ai, L. H.; Zhang, C. Y.; Chen, Z. L., Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 2011, 192, (3), 1515-1524. 5. Scherer, M. M.; Richter, S.; Valentine, R. L.; Alvarez, P. J. J., Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol. 2000, 30, (3), 363-411. 6. US Environmental Protection Agency, Edition of Drinking Water Standards and Health Advisories; EPA 822-R-09-011, EPA Office of Water, Washington, DC, 2009. 7. Zhang, W. X., Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 2003, 5, (3-4), 323-332. 8. Fu, F. L.; Dionysiou, D. D.; Liu, H., The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194-205. 9. Bleyl, S.; Kopinke, F. D.; Mackenzie, K., Carbo-Iron (R)-Synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment. Chem. Eng. J. 2012, 191, 588-595. 10. Qiu, X. H.; Fang, Z. Q.; Liang, B.; Gu, F. L.; Xu, Z. C., Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. J. Hazard. Mater. 2011, 193, 70-81. 11. Jia, H. Z.; Wang, C. Y., Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite. Chem. Eng. J. 2012, 191, 202-209. 12. Wang, Y. Q.; Liu, W.; Wang, T.; Ni, J. R., Arsenate adsorption onto Fe-TNTs prepared by a novel water-ethanol hydrothermal method: Mechanism and synergistic effect. Journal of Colloid and Interface Science 2015, 440, 253-262. 13. Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W.; Li, F.; Cheng, H. M., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, (1), 107-131. 14. Yao, Y. J.; Miao, S. D.; Liu, S. Z.; Ma, L. P.; Sun, H. Q.; Wang, S. B., Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 2012, 184, 326-332. 15. Wang, H.; Yuan, X. Z.; Wu, Y.; Chen, X. H.; Leng, L. J.; Wang, H.; Li, H.; Zeng, G. M., Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 2015, 262, 597-606. 16. Liu, Y.; Luo, C.; Cui, G. J.; Yan, S. Q., Synthesis of manganese dioxide/iron oxide/graphene oxide magnetic nanocomposites for hexavalent chromium removal. RSC Adv. 2015, 5, (67), 54156-54164. 17. Arnold, W. A.; Roberts, A. L., Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles. Environ. Sci. Technol. 2000, 34, (9), 1794-1805. 18. He, F.; Zhao, D. Y., Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 2005, 39, (9), 3314-3320. 19. Zhuang, Y.; Ahn, S.; Seyfferth, A. L.; Masue-Slowey, Y.; Fendorf, S.; Luthy, R. G., Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron. Environ. Sci. Technol. 2011, 45, (11), 4896-4903. 20. Tseng, H. H.; Su, J. G.; Liang, C. J., Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. J. Hazard. Mater. 2011, 192, (2), 500-506. 21. Yin, W. Z.; Wu, J. H.; Li, P.; Wang, X. D.; Zhu, N. W.; Wu, P. X.; Yang, B., Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions. Chem. Eng. J. 2012, 184, 198-204. 22. Zhang, W.; Chen, L.; Chen, H.; Xia, S. Q., The effect of Fe-0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge. J. Hazard. Mater. 2007, 143, (1-2), 57-64. 23. Mangal, H.; Saxena, A.; Rawat, A. S.; Kumar, V.; Rai, P. K.; Datta, M., Adsorption of nitrobenzene on zero valent iron loaded metal oxide nanoparticles under static conditions. Microporous Mesoporous Mat. 2013, 168, 247-256. 24. Hu, S. H.; Yao, H. R.; Wang, K. F.; Lu, C.; Wu, Y. G., Intensify Removal of Nitrobenzene from Aqueous Solution Using Nano-Zero Valent Iron/Granular Activated Carbon Composite as Fenton-Like Catalyst. Water Air Soil Pollut. 2015, 226, (5), 13. 25. Shi, L. N.; Zhang, X.; Chen, Z. L., Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research 2011, 45, (2), 886-892. 26. Melitas, N.; Chuffe-Moscoso, O.; Farrell, J., Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects. Environ. Sci. Technol. 2001, 35, (19), 3948-3953. 27. Budiman, F.; Bashirom, N.; Tan, W. K.; Razak, K. A.; Matsuda, A.; Lockman, Z., Rapid nanosheets and nanowires formation by thermal oxidation of iron in water vapour and their applications as Cr(VI) adsorbent. Appl. Surf. Sci. 2016, 380, 172-177. 28. Ge, X.; Liu, J. T.; Song, X. Y.; Wang, G. Z.; Zhang, H. M.; Zhang, Y. X.; Zhao, H. J., Hierarchical iron containing gamma-MnO2 hollow microspheres: A facile one-step synthesis and effective removal of As(III) via oxidation and adsorption. Chem. Eng. J. 2016, 301, 139-148. 29. Su, C. M.; Puls, R. W., Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environ. Sci. Technol. 2001, 35, (22), 4562-4568. 30. Khalil, A. M. E.; Eljamal, O.; Jribi, S.; Matsunaga, N., Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition. Chem. Eng. J. 2016, 287, 367-380. 31. Shi, J. L.; Long, C.; Li, A. M., Selective reduction of nitrate into nitrogen using Fe-Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH. Chem. Eng. J. 2016, 286, 408-415. 32. Ramirez, J. H.; Maldonado-Hodar, F. J.; Perez-Cadenas, A. F.; Moreno-Castilla, C.; Costa, C. A.; Madeira, L. M., Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl. Catal. B-Environ. 2007, 75, (3-4), 312-323. 33. Wang, Y. X.; Sun, H. Q.; Duan, X. G.; Ang, H. M.; Tade, M. O.; Wang, S. B., A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Appl. Catal. B-Environ. 2015, 172, 73-81. 34. MH Jang, M Lim, YS Hwang, Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environmental Health and Toxicology 2014, 29, 1-9. 35. Matheson, L. J.; Tratnyek, P. G., Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28, (12), 2045-2053. 36. Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C., Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media-formation of nannoscale Fe, FeB and Fe2B powders. Inorg. Chem. 1995, 34, (1), 28-35. 37. Wang, C. B.; Zhang, W. X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, (7), 2154-2156. 38. Tee, Y. H.; Bachas, L.; Bhattacharyya, D., Degradation of Trichloroethylene and Dichlorobiphenyls by Iron-Based Bimetallic Nanoparticles. J. Phys. Chem. C 2009, 113, (22), 9454-9464. 39. Barnes, R. J.; Riba, O.; Gardner, M. N.; Scott, T. B.; Jackman, S. A.; Thompson, I. P., Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 2010, 79, (4), 448-454. 40. Schrick, B.; Blough, J. L.; Jones, A. D.; Mallouk, T. E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mat. 2002, 14, (12), 5140-5147. 41. Zhou, J. S.; Song, H. H.; Ma, L. L.; Chen, X. H., Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv. 2011, 1, (5), 782-791. 42. Elliott, D. W.; Zhang, W. X., Field assessment of nanoscale biometallic particles for groundwater treatment. Environ. Sci. Technol. 2001, 35, (24), 4922-4926. 43. Lien, H. L.; Zhang, W. X., Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Appl. Catal. B-Environ. 2007, 77, (1-2), 110-116. 44. Zhang, W. X.; Wang, C. B.; Lien, H. L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 1998, 40, (4), 387-395. 45. Lai, B.; Zhang, Y. H.; Chen, Z. Y.; Yang, P.; Zhou, Y. X.; Wang, J. L., Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles. Appl. Catal. B-Environ. 2014, 144, 816-830. 46. Yan, W. L.; Herzing, A. A.; Li, X. Q.; Kiely, C. J.; Zhang, W. X., Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environ. Sci. Technol. 2010, 44, (11), 4288-4294. 47. Huang, Q.; Liu, W.; Peng, P. A.; Huang, W. L., Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. J. Hazard. Mater. 2013, 262, 634-641. 48. Nie, X. Q.; Liu, J. G.; Zeng, X. W.; Yue, D. B., Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles. Journal of environmental sciences 2013, 25, (3), 473-478. 49. Xu, F. Y.; Deng, S. B.; Xu, J.; Zhang, W.; Wu, M.; Wang, B.; Huang, J.; Yu, G., Highly Active and Stable Ni-Fe Bimetal Prepared by Ball Milling for Catalytic Hydrodechlorination of 4-Chlorophenol. Environ. Sci. Technol. 2012, 46, (8), 4576-4582. 50. Cao, J.; Xu, R. F.; Tang, H.; Tang, S. S.; Cao, M. H., Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene. Sci. Total Environ. 2011, 409, (11), 2336-2341. 51. Koutsospyros, A.; Pavlov, J.; Fawcett, J.; Strickland, D.; Smolinski, B.; Braida, W., Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. J. Hazard. Mater. 2012, 219, 75-81. 52. Zhang, R.; Li, J.; Liu, C.; Shen, J.; Sun, X.; Han, W.; Wang, L., Reduction of nitrobenzene using nanoscale zero-valent iron confined in channels of ordered mesoporous silica. Colloid Surf. A-Physicochem. Eng. Asp. 2013, 425, 108-114. 53. Ling, X. F.; Li, J. S.; Zhu, W.; Zhu, Y. Y.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J., Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene. Chemosphere 2012, 87, (6), 655-660. 54. Zhu, H. J.; Jia, Y. F.; Wu, X.; Wang, H., Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172, (2-3), 1591-1596. 55. Du, Q.; Zhang, S. J.; Pan, B. C.; Lv, L.; Zhang, W. M.; Zhang, Q. X., Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. Water Research 2013, 47, (16), 6064-6074. 56. Lv, X. S.; Xu, J.; Jiang, G. M.; Xu, X. H., Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 2011, 85, (7), 1204-1209. 57. Jabeen, H.; Chandra, V.; Jung, S.; Lee, J. W.; Kim, K. S.; Bin Kim, S., Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 2011, 3, (9), 3583-3585. 58. Sun, Z. Z.; James, D. K.; Tour, J. M., Graphene Chemistry: Synthesis and Manipulation. J. Phys. Chem. Lett. 2011, 2, (19), 2425-2432. 59. He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, (1-2), 53-56. 60. Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S., Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 2010, 4, (7), 3979-3986. 61. Zhu, J. H.; Wei, S. Y.; Gu, H. B.; Rapole, S. B.; Wang, Q.; Luo, Z. P.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. H., One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal. Environ. Sci. Technol. 2012, 46, (2), 977-985. 62. Kim, H.; Hong, H. J.; Jung, J. D. o. t. T. b. n. z.-v. i. n. i. i. a. b. K., S. H.; Yang, J. W., Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 2010, 176, (1-3), 1038-1043. 63. Tang, H.; Zhu, D. Q.; Li, T. L.; Kong, H. N.; Chen, W., Reductive Dechlorination of Activated Carbon-Adsorbed Trichloroethylene by Zero-Valent Iron: Carbon as Electron Shuttle. J. Environ. Qual. 2011, 40, (6), 1878-1885. 64. Sreeprasad, T. S.; Maliyekkal, S. M.; Lisha, K. P.; Pradeep, T., Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification. J. Hazard. Mater. 2011, 186, (1), 921-931. 65. Tesh, S. J.; Scott, T. B., Nano-Composites for Water Remediation: A Review. Adv. Mater. 2014, 26, (35), 6056-6068. 66. Wei, J. J.; Qian, Y. J.; Liu, W. J.; Wang, L. T.; Ge, Y. J.; Zhang, J. H.; Yu, J.; Ma, X. M., Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe. Journal of environmental sciences 2014, 26, (5), 1162-1170. 67. Zhou, T.; Li, Y. Z.; Lim, T. T., Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: Comparisons with other bimetallic systems, kinetics and mechanism. Sep. Purif. Technol. 2010, 76, (2), 206-214. 68. Han, Y. L.; Liu, C. J.; Horita, J.; Yan, W. L., Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: Solute-induced catalyst deactivation analyzed by carbon isotope fractionation. Appl. Catal. B-Environ. 2016, 188, 77-86. 69. Min, S. D.; Zhao, C. J.; Chen, G. R.; Qian, X. Z., One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)(2) films on nickel foam for high performance supercapacitors. Electrochim. Acta 2014, 115, 155-164. 70. Wang, D. W.; Min, Y. G.; Yu, Y. H.; Peng, B., A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. Journal of Colloid and Interface Science 2014, 417, 270-277.
|