|
1. Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170. 2. Daniel, M.-C. and D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 2003. 104(1): p. 293-346. 3. Sapsford, K.E., et al., Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013. 113(3): p. 1904-2074. 4. Eustis, S. and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006. 35(3): p. 209-217. 5. de Lima, R., A.B. Seabra, and N. Durán, Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, 2012. 32(11): p. 867-879. 6. Nozik, A.J., et al., Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chemical Reviews, 2010. 110(11): p. 6873-6890. 7. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021. 8. Laurent, S., et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008. 108(6): p. 2064-2110. 9. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011. 63(1–2): p. 24-46. 10. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005. 5(3). 11. Koo, O.M., I. Rubinstein, and H. Onyuksel, Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(3): p. 193-212. 12. Shi, J., et al., Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 2010. 10(9): p. 3223-3230. 13. Cuenca, A.G., et al., Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006. 107(3): p. 459-466. 14. Vemuri, S. and C.T. Rhodes, Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica Acta Helvetiae, 1995. 70(2): p. 95-111. 15. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 2012. 64, Supplement(0): p. 206-212. 16. Kango, S., et al., Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 2013. 38(8): p. 1232-1261. 17. Kataoka, K., A. Harada, and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001. 47(1): p. 113-131. 18. Müller, R.H., K. Mäder, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(1): p. 161-177. 19. Couvreur, P., Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 2013. 65(1): p. 21-23. 20. Ensign, L.M., R. Cone, and J. Hanes, Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 2012. 64(6): p. 557-570. 21. Reddy, L.H., et al., Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 2012. 112(11): p. 5818-5878. 22. Yoo, D., et al., Theranostic Magnetic Nanoparticles. Accounts of Chemical Research, 2011. 44(10): p. 863-874. 23. Nicolas, J., Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12(11): p. 991-1003. 24. Fleige, E., M.A. Quadir, and R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Advanced Drug Delivery Reviews, 2012. 64(9): p. 866-884. 25. Gao, W., J.M. Chan, and O.C. Farokhzad, pH-Responsive Nanoparticles for Drug Delivery. Molecular Pharmaceutics, 2010. 7(6): p. 1913-1920. 26. Dai, J., et al., pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. International Journal of Pharmaceutics, 2004. 280(1–2): p. 229-240. 27. Du, J.-Z., et al., A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angewandte Chemie International Edition, 2010. 49(21): p. 3621-3626. 28. Duncan, R., Development of HPMA copolymer–anticancer conjugates: Clinical experience and lessons learnt. Advanced Drug Delivery Reviews, 2009. 61(13): p. 1131-1148. 29. Kang, H., et al., Near-Infrared Light-Responsive Core–Shell Nanogels for Targeted Drug Delivery. ACS Nano, 2011. 5(6): p. 5094-5099. 30. Cabane, E., et al., Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter, 2011. 7(19): p. 9167-9176. 31. Matsumoto, S., et al., Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery. Biomacromolecules, 2008. 10(1): p. 119-127. 32. Herlambang, S., et al., Disulfide crosslinked polyion complex micelles encapsulating dendrimer phthalocyanine directed to improved efficiency of photodynamic therapy. Journal of Controlled Release, 2011. 155(3): p. 449-457. 33. Lee, S.H., et al., Current Progress in Reactive Oxygen Species (ROS)-Responsive Materials for Biomedical Applications. Advanced Healthcare Materials, 2013. 2(6): p. 908-915. 34. Vo, C.D., G. Kilcher, and N. Tirelli, Polymers and Sulfur: what are Organic Polysulfides Good For? Preparative Strategies and Biological Applications. Macromolecular Rapid Communications, 2009. 30(4-5): p. 299-315. 35. Napoli, A., et al., Oxidation-responsive polymeric vesicles. Nat Mater, 2004. 3(3): p. 183-189. 36. Velluto, D., D. Demurtas, and J.A. Hubbell, PEG-b-PPS Diblock Copolymer Aggregates for Hydrophobic Drug Solubilization and Release: Cyclosporin A as an Example. Molecular Pharmaceutics, 2008. 5(4): p. 632-642. 37. Gupta, M.K., et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598. 38. Garrison, W.M., Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews, 1987. 87(2): p. 381-398. 39. Yu, S.S., et al., Physiologically Relevant Oxidative Degradation of Oligo(proline) Cross-Linked Polymeric Scaffolds. Biomacromolecules, 2011. 12(12): p. 4357-4366. 40. Wilson, D.S., et al., Orally delivered thioketal nanoparticles loaded with TNF-a siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater, 2010. 9(11): p. 923-928. 41. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30. 42. Schulze, A. and A.L. Harris, How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012. 491(7424): p. 364-373. 43. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nano, 2007. 2(12): p. 751-760. 44. Miller, A.B., et al., Reporting results of cancer treatment. Cancer, 1981. 47(1): p. 207-214. 45. Dougan, M. and G. Dranoff, Immunotherapy of Cancer, in Innate Immune Regulation and Cancer Immunotherapy, R. Wang, Editor. 2012, Springer New York. p. 391-414. 46. Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012. 12(4): p. 252-264. 47. Noordijk, E.M., et al., Radiotherapy as an alternative to surgery in elderly patients with resectable lung cancer. Radiotherapy and Oncology, 1988. 13(2): p. 83-89. 48. Norén, G., et al., Gamma Knife Surgery in Acoustic Tumours, in Advances in Stereotactic and Functional Neurosurgery 10, B. Meyerson, et al., Editors. 1993, Springer Vienna. p. 104-107. 49. Wu, A., et al., Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. International Journal of Radiation Oncology*Biology*Physics, 1990. 18(4): p. 941-949. 50. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387. 51. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535-545. 52. Bonnett, R., Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 1995. 24(1): p. 19-33. 53. Dougherty, T.J., et al., Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl Cancer Inst., 1975. 55: p. 115-121. 54. Kelly, J.F., M.E. Snell, and M.C. Berenbaum, Photodynamic destruction of human bladder carcinoma. Br. J. Cancer 1975. 31: p. 237-244. 55. Dougherty, T.J., et al., Photoradiation Therapy for the Treatment of Malignant Tumors. Cancer Research, 1978. 38(8): p. 2628-2635. 56. McCaughan, J.S.J., et al., Palliation of esophageal malignancy with photoradiation therapy. Cancer, 1984. 54: p. 2905-2910. 57. Hayata, Y., et al., Photodynamic therapy with hematoporphyrin derivative in cancer of the upper gastrointestinal tract. Semin. Surg. Oncol., 1985. 1: p. 1-11. 58. Hayata, Y., et al., Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 1982. 81: p. 269-277. 59. Lim, C.-K., et al., Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Letters, 2013. 334(2): p. 176-187. 60. Chatterjee, D.K., L.S. Fong, and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1627-1637. 61. Derycke, A.S.L. and P.A.M. de Witte, Liposomes for photodynamic therapy. Advanced Drug Delivery Reviews, 2004. 56(1): p. 17-30. 62. Yuan, F., et al., Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 1995. 55(17): p. 3752-3756. 63. Needham, D., T.J. McIntosh, and D.D. Lasic, Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1992. 1108(1): p. 40-48. 64. van Nostrum, C.F., Polymeric micelles to deliver photosensitizers for photodynamic therapy. Advanced Drug Delivery Reviews, 2004. 56(1): p. 9-16. 65. Bugaj, A.M., Targeted photodynamic therapy - a promising strategy of tumor treatment. Photochemical & Photobiological Sciences, 2011. 10(7): p. 1097-1109. 66. Konan, Y.N., et al., Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. European Journal of Pharmaceutical Sciences, 2003. 18(3–4): p. 241-249. 67. Hamblin, M.R., et al., Pegylation of a Chlorine6 Polymer Conjugate Increases Tumor Targeting of Photosensitizer. Cancer Research, 2001. 61(19): p. 7155-7162. 68. Vaidya, A., et al., Contrast-Enhanced MRI-Guided Photodynamic Cancer Therapy with a Pegylated Bifunctional Polymer Conjugate. Pharmaceutical Research, 2008. 25(9): p. 2002-2011. 69. Slowing, I.I., et al., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 2007. 17(8): p. 1225-1236. 70. Bechet, D., et al., Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology, 2008. 26(11): p. 612-621. 71. Roy, I., et al., Ceramic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs: A Novel Drug−Carrier System for Photodynamic Therapy. Journal of the American Chemical Society, 2003. 125(26): p. 7860-7865. 72. Neuberger, T., et al., Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 2005. 293(1): p. 483-496. 73. Veiseh, O., J.W. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 2010. 62(3): p. 284-304. 74. Kumar, M.N.V.R., et al., Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 2004. 104(12): p. 6017-6084. 75. Hee Kim, E., et al., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2005. 289(0): p. 328-330. 76. Bhattarai, S.R., et al., Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. Journal of Virological Methods, 2008. 147(2): p. 213-218. 77. Park, J.W., et al., Clustered Magnetite Nanocrystals Cross-Linked with PEI for Efficient siRNA Delivery. Biomacromolecules, 2010. 12(2): p. 457-465. 78. Kircheis, R., L. Wightman, and E. Wagner, Design and gene delivery activity of modified polyethylenimines. Advanced Drug Delivery Reviews, 2001. 53(3): p. 341-358. 79. Kievit, F.M., et al., PEI–PEG–Chitosan-Copolymer-Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection. Advanced Functional Materials, 2009. 19(14): p. 2244-2251. 80. Chen, H., et al., Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Research, 2010. 3(12): p. 852-862. 81. Xie, J., et al., PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010. 31(11): p. 3016-3022. 82. Jain, T.K., et al., Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials, 2008. 29(29): p. 4012-4021. 83. Zhang, J., et al., On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomaterialia, 2008. 4(1): p. 40-48. 84. Yang, X., et al., Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer, 2008. 49(16): p. 3477-3485. 85. Huang, P., et al., Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials, 2011. 32(13): p. 3447-3458. 86. Park, J.H., et al., Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 2010. 62(1): p. 28-41. 87. Laurent, S., et al., Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011. 166(1–2): p. 8-23. 88. Jordan, A., et al., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 2006. 78(1): p. 7-14. 89. Satarkar, N.S. and J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. Journal of Controlled Release, 2008. 130(3): p. 246-251. 90. Haas, H.C., N.W. Schuler, and R.L. Macdonald, Oxidized polyethylenimine. Journal of Polymer Science Part A-1: Polymer Chemistry, 1972. 10(11): p. 3143-3158. 91. Bartholomew, R.F. and R.S. Davidson, The photosensitised oxidation of amines. Part II. The use of dyes as photosensitisers: evidence that singlet oxygen is not involved. Journal of the Chemical Society C: Organic, 1971(0): p. 2347-2351. 92. Davidson, R.S. and K.R. Trethewey, Photosensitised oxidation of amines: mechanism of oxidation of triethylamine. Journal of the Chemical Society, Perkin Transactions 2, 1977(2): p. 173-178. 93. Xu, Z., et al., Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009. 21(9): p. 1778-1780. 94. Uppal, A., et al., Photodynamic Action of Rose Bengal Silica Nanoparticle Complex on Breast and Oral Cancer Cell Lines. Photochemistry and Photobiology, 2011. 87(5): p. 1146-1151
|