帳號:guest(3.149.245.230)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉桓溥
論文名稱(中文):開發玫瑰紅裝載之複合高分子材料作為光激發藥物控制釋放之奈米平台
論文名稱(外文):Development of rose bengal-loaded multipolymeric nanoplateform as photo-responsive drug carrier for cancer therapy
指導教授(中文):黃郁棻
口試委員(中文):陳仁焜
張建文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012515
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:90
中文關鍵詞:玫瑰紅四氧化三鐵光動力治療藥物控制釋放
相關次數:
  • 推薦推薦:0
  • 點閱點閱:127
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
玫瑰紅(Rose Bengal)具有優良的光敏化效率,能產生大量的單態氧,於光動力治療領域深具應用潛力。過去研究可透過直接修飾如醋酸化、或藉由奈米載體攜帶,協助藥物抵達並累積於腫瘤微環境,並提升其穿越細胞膜之能力,達到有效傳遞藥物之目的。本研究主要利用甲殼素(chitosan)、聚乙烯醇(Polyvinyl alcohol)、混合短鏈聚乙烯亞胺(Polyethylenimine),以油水乳化法將疏水性氧化鐵奈米粒子包覆於奈米團簇中,作為光動力藥物載體。此複合體除具有良好的水溶分散性,聚乙烯亞胺之陽離子聚電解質特性,亦可藉由靜電吸引力,減少負電性玫瑰紅分子於中性環境下之滲漏問題;一旦施予光照,玫瑰紅的光敏化作用會產生大量活性氧分子,進而氧化聚乙烯亞胺之三級胺集團,造成奈米團簇之表面電位下降,使玫瑰紅分子從載體中釋放,達到光動力控制藥物釋放之目的。磁性鐵奈米粒子能在本體系中進一步扮演磁共振造影對比劑的顯影功能,以及提供磁力導引靶向式藥物傳遞,利用磁性導引以及光動力誘導藥物釋放可以達到高準確性的藥物傳遞及癌症治療。
綜合上述,本研究提出簡單而快速的合成方法,不須額外的化學性修飾以及共聚合高分子的製程,利用單純的高分子及藥物摻雜,並以靜電作用力以及親疏水作用力進行合成,完成一對氧化壓力敏感之新穎複合高分子材料,利用聚乙烯亞胺之陽離子特性,在光敏化反應中的可調控性,可控制負電性藥物或核糖核酸的吸附與釋放,開發出有別於傳統光動力治療,一智慧型之癌症治療奈米平台。
Rose bengal (RB) which exhibits high singlet oxygen (1O2) yield is a clinical promising photosensitizer in anticancer therapy. Several RB hydrophobic derivatives (e.g., acetate) have been developed to facilitate intracellular accumulation. Nanoparticles also serve as effective carriers to deliver these compounds to the tumor microenvironment, or to cross biological barriers such as cell membranes. In this study, RB molecules were encapsulated in a mixture of chitosan, polyvinyl alcohol and branched polyethylenimine (bPEI) with hydrophobic iron oxide nanoparticles through an oil-in-water emulsion method. The as-prepared multipolymeric magnetic nanoclusters displayed high water dispersibility and the cationic groups of bPEI were effective for RB loading through electrostatic interaction. In addition, triggered release of the loaded drugs also occurred simultaneously during the photodynamic reaction. The improvement of photodynamic-stimulated triggered release holds great promise in precise control of drug delivery.
摘要 II
Abstract III
致謝 IV
第一章 緒論 1
1.1奈米科技與生醫應用 1
1.1.1奈米材料簡介 1
1.1.2奈米藥物載體 2
1.1.3觸發-應答式藥物載體 4
1.2癌症以及藥物治療 10
1.2.1癌症簡介 10
1.2.2癌症的藥物治療 11
1.2.3光動力治療 12
1.3超順磁奈米氧化鐵鐵於癌症治療應用 17
1.3.1超順磁奈米氧化鐵 17
1.3.2超順磁奈米氧化鐵的表面修飾材料 18
1.3.3超順磁奈米氧化鐵的粒子構型與物理特性 21
1.3.4超順磁奈米氧化鐵於藥物載體開發 22
1.4研究動機與目的 24
第二章 實驗材料與方法 27
2.1 實驗藥品與儀器 27
2.1.1 實驗藥品 27
2.1.2 緩衝溶液配置 29
2.1.3 細胞培養與操作 30
2.1.4 儀器 30
2.2 四氧化三鐵奈米粒子的合成與特性鑑定 32
2.2.1四氧化三鐵奈米粒子合成 32
2.2.2四氧化三鐵奈米粒子的鑑定 32
2.3藥物載體之合成與鑑定 33
2.3.1高分子四氧化三鐵奈米團簇合成 33
2.3.2玫瑰紅裝載高分子四氧化三鐵奈米團簇合成 34
2.3.3 藥物載體之載附效率定量 35
2.3.4 藥物載體之特性鑑定 36
2.4藥物載體溶液條件的特性探討 36
2.4.1溶液條件的自由基產率分析 36
2.4.2溶液條件的藥物洩漏分析 37
2.4.3溶液條件的藥物釋放分析 37
2.4.4藥物載體於不同環境之穩定性探討 37
2.4.5光照對藥物載體的特性影響 37
2.4.6活性氧自由基對藥物載體的特性影響 38
2.4.7活性氧自由基對高分子氧化的影響 38
2.4.8 RB對bPEI的光氧化行為分析 38
2.5藥物載體與目標細胞 MCF-7 的作用 39
2.5.1流式細胞儀分析載體吞噬效率 39
2.5.2流式細胞儀分析載體自由基產生之效率 39
2.5.3普魯士藍染色分析載體於細胞吞噬效率 40
2.5.4共軛交螢光顯微鏡分析細胞內藥物釋放 41
2.5.5細胞存活率分析 41
2.5.6外加磁場對載體以及細胞作用的影響 42
第三章 實驗結果與討論 44
3.1 四氧化三鐵奈米粒子的合成與特性鑑定 44
3.1.1四氧化三鐵奈米粒子合成與鑑定 44
3.2藥物載體之合成與鑑定 44
3.2.1高分子四氧化三鐵奈米團簇合成與鑑定 44
3.2.2藥物載體於不同環境之穩定性探討 46
3.2.3 藥物載體之載附效率定量 46
3.3藥物載體溶液條件的特性探討 47
3.3.1溶液條件的自由基產率分析 47
3.3.2溶液條件的藥物洩漏分析 48
3.3.3溶液條件的藥物釋放分析 48
3.3.4藥物載體之氧化壓力應答性討論 49
3.4藥物載體與目標細胞 MCF-7 的作用 51
3.4.1流式細胞儀分析載體吞噬效率及自由基產生之效率 51
3.4.2探討藥物載體於細胞內的自由基生成效率 52
3.4.3顯微鏡分析載體於細胞吞噬效率 52
3.4.4共軛交螢光顯微鏡分析細胞內藥物釋放 53
3.4.5細胞存活率分析 53
3.5奈米藥物載體的磁物理特性探討 55
3.5.1飽和磁化量分析 55
3.5.2核磁共振T2造影對比能力分析 55
3.5.3高分子藥物載體的熱重分析 55
第四章 結論 57
第五章 未來展望 59
圖表說明 60
參考文獻 84
1. Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
2. Daniel, M.-C. and D. Astruc, Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 2003. 104(1): p. 293-346.
3. Sapsford, K.E., et al., Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013. 113(3): p. 1904-2074.
4. Eustis, S. and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006. 35(3): p. 209-217.
5. de Lima, R., A.B. Seabra, and N. Durán, Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, 2012. 32(11): p. 867-879.
6. Nozik, A.J., et al., Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chemical Reviews, 2010. 110(11): p. 6873-6890.
7. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
8. Laurent, S., et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008. 108(6): p. 2064-2110.
9. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011. 63(1–2): p. 24-46.
10. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005. 5(3).
11. Koo, O.M., I. Rubinstein, and H. Onyuksel, Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(3): p. 193-212.
12. Shi, J., et al., Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 2010. 10(9): p. 3223-3230.
13. Cuenca, A.G., et al., Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006. 107(3): p. 459-466.
14. Vemuri, S. and C.T. Rhodes, Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica Acta Helvetiae, 1995. 70(2): p. 95-111.
15. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 2012. 64, Supplement(0): p. 206-212.
16. Kango, S., et al., Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 2013. 38(8): p. 1232-1261.
17. Kataoka, K., A. Harada, and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001. 47(1): p. 113-131.
18. Müller, R.H., K. Mäder, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(1): p. 161-177.
19. Couvreur, P., Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 2013. 65(1): p. 21-23.
20. Ensign, L.M., R. Cone, and J. Hanes, Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 2012. 64(6): p. 557-570.
21. Reddy, L.H., et al., Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 2012. 112(11): p. 5818-5878.
22. Yoo, D., et al., Theranostic Magnetic Nanoparticles. Accounts of Chemical Research, 2011. 44(10): p. 863-874.
23. Nicolas, J., Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12(11): p. 991-1003.
24. Fleige, E., M.A. Quadir, and R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Advanced Drug Delivery Reviews, 2012. 64(9): p. 866-884.
25. Gao, W., J.M. Chan, and O.C. Farokhzad, pH-Responsive Nanoparticles for Drug Delivery. Molecular Pharmaceutics, 2010. 7(6): p. 1913-1920.
26. Dai, J., et al., pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. International Journal of Pharmaceutics, 2004. 280(1–2): p. 229-240.
27. Du, J.-Z., et al., A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angewandte Chemie International Edition, 2010. 49(21): p. 3621-3626.
28. Duncan, R., Development of HPMA copolymer–anticancer conjugates: Clinical experience and lessons learnt. Advanced Drug Delivery Reviews, 2009. 61(13): p. 1131-1148.
29. Kang, H., et al., Near-Infrared Light-Responsive Core–Shell Nanogels for Targeted Drug Delivery. ACS Nano, 2011. 5(6): p. 5094-5099.
30. Cabane, E., et al., Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter, 2011. 7(19): p. 9167-9176.
31. Matsumoto, S., et al., Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery. Biomacromolecules, 2008. 10(1): p. 119-127.
32. Herlambang, S., et al., Disulfide crosslinked polyion complex micelles encapsulating dendrimer phthalocyanine directed to improved efficiency of photodynamic therapy. Journal of Controlled Release, 2011. 155(3): p. 449-457.
33. Lee, S.H., et al., Current Progress in Reactive Oxygen Species (ROS)-Responsive Materials for Biomedical Applications. Advanced Healthcare Materials, 2013. 2(6): p. 908-915.
34. Vo, C.D., G. Kilcher, and N. Tirelli, Polymers and Sulfur: what are Organic Polysulfides Good For? Preparative Strategies and Biological Applications. Macromolecular Rapid Communications, 2009. 30(4-5): p. 299-315.
35. Napoli, A., et al., Oxidation-responsive polymeric vesicles. Nat Mater, 2004. 3(3): p. 183-189.
36. Velluto, D., D. Demurtas, and J.A. Hubbell, PEG-b-PPS Diblock Copolymer Aggregates for Hydrophobic Drug Solubilization and Release: Cyclosporin A as an Example. Molecular Pharmaceutics, 2008. 5(4): p. 632-642.
37. Gupta, M.K., et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598.
38. Garrison, W.M., Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews, 1987. 87(2): p. 381-398.
39. Yu, S.S., et al., Physiologically Relevant Oxidative Degradation of Oligo(proline) Cross-Linked Polymeric Scaffolds. Biomacromolecules, 2011. 12(12): p. 4357-4366.
40. Wilson, D.S., et al., Orally delivered thioketal nanoparticles loaded with TNF-a siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater, 2010. 9(11): p. 923-928.
41. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30.
42. Schulze, A. and A.L. Harris, How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012. 491(7424): p. 364-373.
43. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nano, 2007. 2(12): p. 751-760.
44. Miller, A.B., et al., Reporting results of cancer treatment. Cancer, 1981. 47(1): p. 207-214.
45. Dougan, M. and G. Dranoff, Immunotherapy of Cancer, in Innate Immune Regulation and Cancer Immunotherapy, R. Wang, Editor. 2012, Springer New York. p. 391-414.
46. Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012. 12(4): p. 252-264.
47. Noordijk, E.M., et al., Radiotherapy as an alternative to surgery in elderly patients with resectable lung cancer. Radiotherapy and Oncology, 1988. 13(2): p. 83-89.
48. Norén, G., et al., Gamma Knife Surgery in Acoustic Tumours, in Advances in Stereotactic and Functional Neurosurgery 10, B. Meyerson, et al., Editors. 1993, Springer Vienna. p. 104-107.
49. Wu, A., et al., Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. International Journal of Radiation Oncology*Biology*Physics, 1990. 18(4): p. 941-949.
50. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387.
51. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535-545.
52. Bonnett, R., Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 1995. 24(1): p. 19-33.
53. Dougherty, T.J., et al., Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl Cancer Inst., 1975. 55: p. 115-121.
54. Kelly, J.F., M.E. Snell, and M.C. Berenbaum, Photodynamic destruction of human bladder carcinoma. Br. J. Cancer 1975. 31: p. 237-244.
55. Dougherty, T.J., et al., Photoradiation Therapy for the Treatment of Malignant Tumors. Cancer Research, 1978. 38(8): p. 2628-2635.
56. McCaughan, J.S.J., et al., Palliation of esophageal malignancy with
photoradiation therapy. Cancer, 1984. 54: p. 2905-2910.
57. Hayata, Y., et al., Photodynamic therapy with hematoporphyrin derivative in cancer of the upper gastrointestinal tract. Semin. Surg. Oncol., 1985. 1: p. 1-11.
58. Hayata, Y., et al., Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 1982. 81: p. 269-277.
59. Lim, C.-K., et al., Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Letters, 2013. 334(2): p. 176-187.
60. Chatterjee, D.K., L.S. Fong, and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1627-1637.
61. Derycke, A.S.L. and P.A.M. de Witte, Liposomes for photodynamic therapy. Advanced Drug Delivery Reviews, 2004. 56(1): p. 17-30.
62. Yuan, F., et al., Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 1995. 55(17): p. 3752-3756.
63. Needham, D., T.J. McIntosh, and D.D. Lasic, Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1992. 1108(1): p. 40-48.
64. van Nostrum, C.F., Polymeric micelles to deliver photosensitizers for photodynamic therapy. Advanced Drug Delivery Reviews, 2004. 56(1): p. 9-16.
65. Bugaj, A.M., Targeted photodynamic therapy - a promising strategy of tumor treatment. Photochemical & Photobiological Sciences, 2011. 10(7): p. 1097-1109.
66. Konan, Y.N., et al., Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. European Journal of Pharmaceutical Sciences, 2003. 18(3–4): p. 241-249.
67. Hamblin, M.R., et al., Pegylation of a Chlorine6 Polymer Conjugate Increases Tumor Targeting of Photosensitizer. Cancer Research, 2001. 61(19): p. 7155-7162.
68. Vaidya, A., et al., Contrast-Enhanced MRI-Guided Photodynamic Cancer Therapy with a Pegylated Bifunctional Polymer Conjugate. Pharmaceutical Research, 2008. 25(9): p. 2002-2011.
69. Slowing, I.I., et al., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 2007. 17(8): p. 1225-1236.
70. Bechet, D., et al., Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology, 2008. 26(11): p. 612-621.
71. Roy, I., et al., Ceramic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs:  A Novel Drug−Carrier System for Photodynamic Therapy. Journal of the American Chemical Society, 2003. 125(26): p. 7860-7865.
72. Neuberger, T., et al., Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 2005. 293(1): p. 483-496.
73. Veiseh, O., J.W. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 2010. 62(3): p. 284-304.
74. Kumar, M.N.V.R., et al., Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 2004. 104(12): p. 6017-6084.
75. Hee Kim, E., et al., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2005. 289(0): p. 328-330.
76. Bhattarai, S.R., et al., Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. Journal of Virological Methods, 2008. 147(2): p. 213-218.
77. Park, J.W., et al., Clustered Magnetite Nanocrystals Cross-Linked with PEI for Efficient siRNA Delivery. Biomacromolecules, 2010. 12(2): p. 457-465.
78. Kircheis, R., L. Wightman, and E. Wagner, Design and gene delivery activity of modified polyethylenimines. Advanced Drug Delivery Reviews, 2001. 53(3): p. 341-358.
79. Kievit, F.M., et al., PEI–PEG–Chitosan-Copolymer-Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection. Advanced Functional Materials, 2009. 19(14): p. 2244-2251.
80. Chen, H., et al., Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Research, 2010. 3(12): p. 852-862.
81. Xie, J., et al., PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010. 31(11): p. 3016-3022.
82. Jain, T.K., et al., Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials, 2008. 29(29): p. 4012-4021.
83. Zhang, J., et al., On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomaterialia, 2008. 4(1): p. 40-48.
84. Yang, X., et al., Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer, 2008. 49(16): p. 3477-3485.
85. Huang, P., et al., Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials, 2011. 32(13): p. 3447-3458.
86. Park, J.H., et al., Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 2010. 62(1): p. 28-41.
87. Laurent, S., et al., Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011. 166(1–2): p. 8-23.
88. Jordan, A., et al., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 2006. 78(1): p. 7-14.
89. Satarkar, N.S. and J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. Journal of Controlled Release, 2008. 130(3): p. 246-251.
90. Haas, H.C., N.W. Schuler, and R.L. Macdonald, Oxidized polyethylenimine. Journal of Polymer Science Part A-1: Polymer Chemistry, 1972. 10(11): p. 3143-3158.
91. Bartholomew, R.F. and R.S. Davidson, The photosensitised oxidation of amines. Part II. The use of dyes as photosensitisers: evidence that singlet oxygen is not involved. Journal of the Chemical Society C: Organic, 1971(0): p. 2347-2351.
92. Davidson, R.S. and K.R. Trethewey, Photosensitised oxidation of amines: mechanism of oxidation of triethylamine. Journal of the Chemical Society, Perkin Transactions 2, 1977(2): p. 173-178.
93. Xu, Z., et al., Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009. 21(9): p. 1778-1780.
94. Uppal, A., et al., Photodynamic Action of Rose Bengal Silica Nanoparticle Complex on Breast and Oral Cancer Cell Lines. Photochemistry and Photobiology, 2011. 87(5): p. 1146-1151
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *