帳號:guest(18.119.103.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鏞任
作者(外文):Chen, Yong Ren
論文名稱(中文):發展放射性氟標幟之fenbufen boron pinacol與celecoxib藥物應用於正子斷層掃描造影與硼中子捕獲治療
論文名稱(外文):Development of radiofluorofenbufen boron pinacol and radiofluorocelecoxib analogs for positron emission tomography and boron neutron capture therapy
指導教授(中文):俞鐘山
指導教授(外文):Yu, Chung Shan
口試委員(中文):林俊成
鄒倫
張智偉
俞鐘山
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012512
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:182
中文關鍵詞:膽管癌celecoxib正子斷層掃描造影硼中子捕獲治療fenbufen
外文關鍵詞:cholangiocarcinomacelecoxibPETBNCTfenbufen
相關次數:
  • 推薦推薦:0
  • 點閱點閱:84
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Fenbufen boron-pinacol (FBpin)與celecoxib皆為非類固醇類消炎藥 (NSAIDs)之類似物,並可利用CH3COO[18F]F進行親電加成反應合成[18F]F-celecoxib產率為20% 與[18F]F-FBpin兩種結構異構物 ([18F]F-FBpin1、[18F]F-FBpin2)產率各為18%、5%;以正子電腦斷層掃描評估放射性氟標幟化合物在膽管癌動物模式中的表現。
富含環氧合酶的膽管癌腫瘤可累積[18F]F-celecoxib到 1.15±0.24 %ID/g (n = 5)、腫瘤對肝臟的比率高達1.38±0.23 (n = 5)且清除率低,因此PET影像上也能明顯看出腫瘤與其它正常組織的差別。[18F]F-FBpin1能在膽管癌腫瘤有1.08±0.13 %ID/g (n = 3)之累積、T/N ratio數值為1.38±0.12 (n = 3)而[18F]F-FBpin2卻有更高之T/N ratio (1.7),不過兩張PET影像上的腎臟與腸道之劑量卻比肝臟還要高許多;動態造影上來看,膽管癌腫瘤的[18F]F-FBpin1放射活度曲線下降的十分快速,主要的原因可能是[18F]F-FBpin1的代謝物對腫瘤有較低親和力之關係。
利用硼中子捕獲治療 (BNCT)方法將FBpin做為含硼藥物以治療含膽管癌腫瘤之動物。將60 mg/kg劑量之FBpin從大鼠尾靜脈注入,40分鐘後以(2.3 ± 0.5)×〖10〗^9 n/s.cm^2之中子束照射治療大鼠。以[18F]FDG-PET觀察治療前後之差異,受FBpin投藥的BNCT組可減少28.49 ± 4.68% (n = 7)的腫瘤,此種結果明顯高於neutron only組的19.14 ± 9.57% (n = 5)。
In this research, [18F]F-celecoxib, [18F]F-FBpin1 and [18F]F-FBpin2 were prepared via the useful electrophilic radiofluorinating agent, 18F-lablled acetyl hypofluorite, from its precursors in 20%, 18% and 5% yield, respectively. Furthermore, we conducted Positron Emission Tomography (PET) on cholangiocarcinoma to clarify the relationship between those Fluoro-NSAIDs and the tumor.
[18F]F-celecoxib could be a promising targeting tracer due to high uptake of cyclooxygenase (COX)-expressed tumor 1.15±0.24 %ID/g (n = 5), low clearance rate and the moderate tumor to liver ratio 1.38±0.23 (n = 5). Thus, the PET image comparable to gross picture which indicates the non-invasive [18F]F-celecoxib PET imaging was able to detect COX-2 tumor in vivo study.
[18F]F-FBpin1 had a higher tumor uptake 1.08±0.13 %ID/g (n = 3) than [18F]F-FBpin2 0.59 (n = 1) %ID/g ,but lower T/N ratio 1.38±0.12 (n = 3). [18F]F-FBpin1 time activity curve in dynamic study showed a rapidly decrease in tumor could be due to the low binding affinity of its metabolite.
In addition, cholangiocarcinoma bearing rats were injected FBpin with 60 mg/kg body weight via tail veins before (2.3 ± 0.5)×〖10〗^9 n/s.cm^2 neutron irradiation at the Tsing Hua Open-pool Reactor, and the efficacy of Boron neutron capture therapy (BNCT) was evaluated from the tumor size with [18F]FDG-PET study. Finally, the larger reduction of [18F]FDG uptake in tumor was measured in BNCT group (28.49 ± 4.68 %, n = 7) than neutron only group (19.14 ± 9.57 %, n = 5). However, we can observe the trend of reduction in tumor uptake with BNCT.
第一章、前言與研究目的 1
1. 膽管癌(bile duct carcinoma)的臨床意義與診斷 1
2. 環氧合酶 (Cyclooxygenase,COX)的生化機制 3
3. 氟乙酸之氟-18分子影像藥物合成 5
4.硼中子捕獲治療 (boron neutron capture therapy,BNCT)與含硼藥物的發展 6
5. 研究目的 9
第二章、材料與方法 12
1. 實驗用之材料 12
1.1. 清華大學實驗室使用之材料與儀器 12
1.2. 台北榮總正子中心所使用之材料與設備 12
1.3. 貴重儀器 13
2. 放射性氟化物的合成與儲備液的製成步驟 15
2.1. 氟化物的合成 15
2.1.1. 製備4-(5-(3-fluoro-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-l)benzenesulfonamide (F-celecoxib) 15
2.1.2. 製備methyl 4-(2'-fluoro-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-4-yl)-4-oxobutanoate (F-FBpin1)、F-FBpin2、F-FBpin3、F-FBpin4與methyl 4-(4'-fluoro-[1,1'-biphenyl]-4-yl)-4-oxobutanoate (m-FFbf) 20
2.1.3. 以CH3COOF/CF3COOH方法氟化trans-resveratrol的過程 31
2.2. 製備動物造影用之放射性儲備液 36
2.2.1. 製備[18F]F-CLX的儲備液 37
2.2.2. 製備[18F]F-FBpin的儲備液 40
3. 動物造影實驗 43
3.1. [18F]F-CLX與[18F]F-FBpin於罹患膽管癌大鼠之正子放射斷層造影 45
3.1.1. 動態 (dynamic)造影 45
3.1.2. 靜態 (static)造影 45
3.1.3. 藥物競爭 (competition blocking)實驗 45
4. 硼中子捕獲治療實驗 47
4.1. FBpin在血清之穩定性 47
4.2. 測量FBpin對細胞之毒性 49
4.3. 細胞的硼含量累積實驗 50
4.4. 動物對FBpin的最高劑量測試 51
4.5. 硼中子捕獲治療實驗 52
第三章、結果與討論 55
1. F-CLX混合物的純化與結構鑑定 55
1.1. F-CLX混合物的1H-NMR結構鑑定 55
1.2. F-CLX混合物的13C-NMR結構鑑定 57
1.3. 混合物的19F-NMR光譜與質譜分析 60
2. F-FBpin的純化與結構鑑定 62
2.1. F-FBpin的1H-NMR結構鑑定 62
2.2. F-FBpin的13C-NMR結構鑑定 63
2.2.1. F-FBpin1的13C-NMR結構鑑定 63
2.2.2. F-FBpin2的13C-NMR結構鑑定 65
2.2.3. tR = 12沖提液的成分分析 67
2.2.4. 預測F-FBpin的分子模型 71
2.3. CH3COOF/CF3COOH反應之副產物分析 73
2.3.1. m-FFbf之化合物結構分析 73
3. 以CH3COOF/CF3COOH方法對NSAIDs標幟氟原子之效能探討 76
3.2. CH3COOF/CF3COOH反應之氟化物生成比例 76
3.2.1. CLX氟標幟反應的氟化產物比例 76
3.2.2. FBpin氟標幟反應的氟化產物比例 77
3.3. CH3COOF在不同溶劑中對boronic ester的取代能力差異 77
3.4. CH3COOF/CF3COOH反應之限制 79
4. 利用micro-PET觀察[18F]F-CLX在老鼠肝臟之分布 80
4.1. 動態造影的結果 80
4.2. 靜態造影的結果 83
4.3. 藥物競爭實驗的結果 85
4.4. 正常動物的靜態造影與藥物競爭實驗之結果 88
4.5. [18F]F-CLX應用於膽管癌治療之發展性 89
5. 利用micro-PET觀察[18F]F-FBpin在大鼠肝臟之分布 91
5.1. 動態造影的結果 91
5.2. 靜態造影的結果 92
5.3. 藥物競爭實驗的結果 95
5.4. [18F]F-FBpin應用於膽管癌治療之發展性 96
6. FBpin應用在硼中子捕獲治療的效果 99
6.1. FBpin在血清之測試 99
6.1.1. FBpin在血清之穩定性 99
6.1.2. FBpin在血清之代謝物分析 101
6.2. 測量FBpin對細胞之毒性結果 103
6.2.1. FBpin對CGCCA細胞珠的毒性測試 103
6.2.2. FBpin對HuCCT1細胞珠的毒性測試 103
6.3. 細胞的硼含量累積實驗 105
6.4. 動物對FBpin的最高劑量測試 107
6.5. 膽管癌腫瘤之硼中子捕獲治療效果 108
6.5.1. BNCT組之膽管癌腫瘤變化 109
6.5.2. Neutron only組之膽管癌腫瘤變化 110
6.5.3. BNCT組與neutron only組的大鼠膽管癌腫瘤結果比較 111
第四章、結論 117
第五章、參考文獻 118
第六章、附錄 124
1. RP-HPLC圖譜 124
1.1. 製備非放射性之F-CLX 124
1.2. 製備動物造影用之[18F]F-CLX 125
1.3. 製備動物造影用之[18F]F-FBpin 127
1.4. FBpin與FBS反應之圖譜 129
1.5. FBpin與FBS的代謝物與標準品之圖譜 131
2. ICP-MS 133
3. 光譜與質譜 135
3.1. Celecoxib 135
3.2. F-celecoxib mixture (F-CLX/CLX = 3/2) 138
3.3. FBpin 144
3.4. F-FBpin1 147
3.5. F-FBpin2 153
3.6. m-FFbf 159
3.7. F-FBpin3&4 mixture 165
3.8. Trans-resveratrol 170
3.9. 待測物(1) 173
ref. list

1. Rainsford, K. D., Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology 2009, 17 (6), 275-342.
2. Ricchi, P.; Zarrilli, R.; Di Palma, A.; Acquaviva, A. M., Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. British journal of cancer 2003, 88 (6), 803-7.
3. Bruice, P. Y., Organic Chemistry. 6th Edition ed.; Pearson Education: 2010.
4. Zhang, Z.; Lai, G.-H.; Sirica, A. E., Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. Hepatology 2004, 39 (4), 1028-1037.
5. Salvado, M. D.; Alfranca, A.; Haeggström, J. Z.; Redondo, J. M., Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. Trends in Molecular Medicine 2012, 18 (4), 233-243.
6. Barth, R. F.; Vicente, M. G. H.; Harling, O. K.; Kiger, W. S.; Riley, K. J.; Binns, P. J.; Wagner, F. M.; Suzuki, M.; Aihara, T.; Kato, I.; Kawabata, S., Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology 2012, 7.
7. Luderer, M. J.; de la Puente, P.; Azab, A. K., Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharmaceutical research 2015, 32 (9), 2824-36.
8. Terada, T.; Hira, D., Intestinal and hepatic drug transporters: pharmacokinetic, pathophysiological, and pharmacogenetic roles. Journal of gastroenterology 2015, 50 (5), 508-19.
9. Andoh, T.; Fujimoto, T.; Sudo, T.; Suzuki, M.; Sakurai, Y.; Sakuma, T.; Moritake, H.; Sugimoto, T.; Takeuchi, T.; Sonobe, H.; Epstein, A. L.; Fukumori, Y.; Ono, K.; Ichikawa, H., Boron neutron capture therapy as new treatment for clear cell sarcoma: Trial on different animal model. Applied Radiation and Isotopes 2014, 88, 59-63.
10. Chung, Y. H.; Hsu, P. H.; Huang, C. W.; Hsieh, W. C.; Huang, F. T.; Chang, W. C.; Chiu, H.; Hsu, S. T.; Yen, T. C., Evaluation of prognostic integrin alpha2beta1 PET tracer and concurrent targeting delivery using focused ultrasound for brain glioma detection. Molecular Pharmaceutics 2014, 11 (11), 3904-14.
11. Zabron, A.; Edwards, R. J.; Khan, S. A., The challenge of cholangiocarcinoma: dissecting the molecular mechanisms of an insidious cancer. Disease models & mechanisms 2013, 6 (2), 281-92.
12. (a) Manfred, H.; Herbert, M.; Bernd, Z., Spectroscopic Methods in Organic Chemistry. 2nd Edition ed.; Thieme Medical 2007; (b) Duddeck, H., E. Pretsch, P. Bühlmann, C. Affolter. Structure determination of organic compounds—Tables of spectra data. Springer, Berlin, 2000. 421 pp. plus CD-ROM. Price £ 40.39, DM 79.00. ISBN 3 540 67815 8. Magnetic Resonance in Chemistry 2002, 40 (3), 247-247.
13. Tjarks, W.; Tiwari, R.; Byun, Y.; Narayanasamy, S.; Barth, R. F., Carboranyl thymidine analogues for neutron capture therapy. Chemical Communications 2007, (47), 4978-4991.
14. Maruyama, K.; Ishida, O.; Kasaoka, S.; Takizawa, T.; Utoguchi, N.; Shinohara, A.; Chiba, M.; Kobayashi, H.; Eriguchi, M.; Yanagie, H., Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). Journal of Controlled Release 2004, 98 (2), 195-207.
15. Lin, S. Y.; Lin, C. J.; Liao, J. W.; Peir, J. J.; Chen, W. L.; Chi, C. W.; Lin, Y. C.; Liu, Y. M.; Chou, F. I., Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model. Anticancer research 2013, 33 (11), 4799-809.
16. Yeh, C. N.; Chiang, K. C.; Juang, H. H.; JH, S. P.; Yu, C. S.; Lin, K. J.; Yeh, T. S.; Jan, Y. Y., Reappraisal of the therapeutic role of celecoxib in cholangiocarcinoma. PloS one 2013, 8 (7), e69928.
17. 胡瑞庭; 楊賢馨; 戴鋒泉 膽道癌. http://www.cgh.org.tw/tw/cancer/intropage08.htm.
18. 簡宏佑; 徐雍智; 卓妮; 盧泰潤 膽管癌 Cholangiocarcinoma. http://www2.cmu.edu.tw/~cmcmd/ctanatomy/clinical/Cholangiocarcinoma.html.
19. Zhang, Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation (vol 39, pg 1028, 2004). Hepatology 2004, 39 (5), 1464-1464.
20. 王緯書 抗癌新藥:COX-2抑制劑. http://www.tmn.idv.tw/tcfund/medecine/nm_25.htm.
21. Botting, R. M., Vane's discovery of the mechanism of action of aspirin changed our understanding of its clinical pharmacology. Pharmacological Reports 2010, 62 (3), 518-525.
22. Wu, T., Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. BBA Reviews on Cancer 2005, 1755 (2), 135-150.
23. Jongthawin, J.; Chusorn, P.; Techasen, A.; Loilome, W.; Boonmars, T.; Thanan, R.; Puapairoj, A.; Khuntikeo, N.; Tassaneeyakul, W.; Yongvanit, P.; Namwat, N., PGE2 signaling and its biosynthesis-related enzymes in cholangiocarcinoma progression. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014, 35 (8), 8051-64.
24. Baron, J. A.; Sandler, R. S.; Bresalier, R. S.; Quan, H.; Riddell, R.; Lanas, A.; Bolognese, J. A.; Oxenius, B.; Horgan, K.; Loftus, S.; Morton, D. G., A Randomized Trial of Rofecoxib for the Chemoprevention of Colorectal Adenomas. Gastroenterology 2006, 131 (6), 1674-1682.
25. Smart, B. E., Fluorine substituent effects (on bioactivity). Journal of Fluorine Chemistry 2001, 109 (1), 3-11.
26. Fowler, J. S.; Wolf, A. P., Working against Time:  Rapid Radiotracer Synthesis and Imaging the Human Brain. Accounts of Chemical Research 1997, 30 (4), 181-188.
27. (a) Jewett, D. M.; Potocki, J. F.; Ehrenkaufer, R. E., A gas-solid-phase microchemical method for the synthesis of acetyl hypofluorite. Journal of Fluorine Chemistry 1984, 24 (4), 477-484; (b) Bida, G. T.; Satyamurthy, N.; Barrio, J. R., The Synthesis of 2-[F-18]Fluoro-2-Deoxy-D-Glucose Using Glycals: A Reexamination. Journal of Nuclear Medicine 1984, 25, 1327-1334; (c) Herscheid, J. D. M.; Wedzinga, R.; Verboom, W.; Visser, G., Synthesis of 18F-labelled 2-fluoro-1,4-quinones using acetylhypofluorite. Applied Radiation and Isotopes 1988, 39 (5), 397-400.
28. 江祥輝 清華大學水池式反應器BNCT(硼中子捕獲治療)設施開始治療病人. http://nuclear.web.nthu.edu.tw/ezfiles/169/1169/attach/71/pta_8365_4802743_38672.pdf.
29. 黃羿馨 治癌大突破 BNCT滅癌不濫殺無辜細胞. http://www.appledaily.com.tw/realtimenews/article/new/20150320/578320/.
30. Lin, K. I.; Yang, C. H.; Huang, C. W.; Jian, J. Y.; Huang, Y. C.; Yu, C. S., Synthesis and structure-activity relationships of fenbufen amide analogs. Molecules (Basel, Switzerland) 2010, 15 (12), 8796-803.
31. Su, Y. H.; Chiang, L. W.; Jeng, K. C.; Huang, H. L.; Chen, J. T.; Lin, W. J.; Huang, C. W.; Yu, C. S., Solution-phase parallel synthesis and screening of anti-tumor activities from fenbufen and ethacrynic acid libraries. Bioorganic & medicinal chemistry letters 2011, 21 (5), 1320-4.
32. Huang, H. L.; Yeh, C. N.; Lee, W. Y.; Huang, Y. C.; Chang, K. W.; Lin, K. J.; Tien, S. F.; Su, W. C.; Yang, C. H.; Chen, J. T.; Lin, W. J.; Fan, S. S.; Yu, C. S., [123I]Iodooctyl fenbufen amide as a SPECT tracer for imaging tumors that over-express COX enzymes. Biomaterials 2013, 34 (13), 3355-65.
33. Tien, S.-W. Preparation and biological assessment of 4-boron pinacol methyl [18F]fluorofenbufen for potential application in positron emission tomography and boron neutron capture therapy. National Tsing Hua University, 2015.
34. Alonso, F.; Riente, P.; Yus, M., Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. European Journal of Organic Chemistry 2009, 2009 (34), 6034-6042.
35. Yeh, C.-N.; Lin, K.-J.; Chen, T.-W.; Wu, R.-C.; Tsao, L.-C.; Chen, Y.-T.; Weng, W.-H.; Chen, M.-F., Characterization of a novel rat cholangiocarcinoma cell culture model-CGCCA. World Journal of Gastroenterology 2011, 17 (24), 2924-2932.
36. Tang, D.; McKinley, E. T.; Hight, M. R.; Uddin, M. I.; Harp, J. M.; Fu, A.; Nickels, M. L.; Buck, J. R.; Manning, H. C., Synthesis and Structure–Activity Relationships of 5,6,7-Substituted Pyrazolopyrimidines: Discovery of a Novel TSPO PET Ligand for Cancer Imaging. Journal of Medicinal Chemistry 2013, 56 (8), 3429-3433.
37. (a) Lin, S.-Y. The therapeutic efficiency and radiobiological effects of boron neutron capture therapy for hepatocellular carcinoma. National Tsing-Hua university, 2011; (b) da Silva, A. F.; Seixas, R. S.; Silva, A. M.; Coimbra, J.; Fernandes, A. C.; Santos, J. P.; Matos, A.; Rino, J.; Santos, I.; Marques, F., Synthesis, characterization and biological evaluation of carboranylmethylbenzo[b]acridones as novel agents for boron neutron capture therapy. Organic & biomolecular chemistry 2014, 12 (28), 5201-11.
38. Pozzi, E. C.; Cardoso, J.; Colombo, L.; Thorp, S.; Monti Hughes, A.; Molinari, A.; Garabalino, M.; Heber, E.; Miller, M.; Itoiz, M.; Aromando, R.; Nigg, D.; Quintana, J.; Trivillin, V.; Schwint, A., Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. Radiat Environ Biophys 2012, 51 (3), 331-339.
39. Jayasundara, C. R.; Unold, J. M.; Oppenheimer, J.; Smith, M. R., 3rd; Maleczka, R. E., Jr., A catalytic borylation/dehalogenation route to o-fluoro arylboronates. Organic Letters 2014, 16 (23), 6072-5.
40. (a) Shang, R.; Ji, D. S.; Chu, L.; Fu, Y.; Liu, L., Synthesis of alpha-aryl nitriles through palladium-catalyzed decarboxylative coupling of cyanoacetate salts with aryl halides and triflates. Angewandte Chemie International Edition 2011, 50 (19), 4470-4; (b) Lund, B. W.; Knapp, A. E.; Piu, F.; Gauthier, N. K.; Begtrup, M.; Hacksell, U.; Olsson, R., Design, Synthesis, and Structure−Activity Analysis of Isoform-Selective Retinoic Acid Receptor β Ligands. Journal of Medicinal Chemistry 2009, 52 (6), 1540-1545.
41. Wrackmeyer, B., Carbon-13 NMR spectroscopy of boron compounds. Progress in Nuclear Magnetic Resonance Spectroscopy 1979, 12 (4), 227-259.
42. Hall, D. G., Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications. In Boronic Acids, Wiley-VCH Verlag GmbH & Co. KGaA: 2006; pp 1-99.
43. López, S. E.; Salazar, J., Trifluoroacetic acid: Uses and recent applications in organic synthesis. Journal of Fluorine Chemistry 2013, 156 (0), 73-100.
44. Vints, I.; Gatenyo, J.; Rozen, S., Fluorination of aryl boronic acids using acetyl hypofluorite made directly from diluted fluorine. The Journal of Organic Chemistry 2013, 78 (23), 11794-7.
45. Lacan, G.; Satyamurthy, N.; Barrio, J. R., Fluorination of (E)-.beta.-(Fluoromethylene)-m-Tyrosine: Regioselective Synthesis of 4-Fluoro-(E)-.beta.-(Fluoromethylene)-m-Tyrosine. The Journal of Organic Chemistry 1995, 60 (1), 227-234.
46. Rozen, S.; Lerman, O., Synthesis and chemistry of trifluoroacetyl hypofluorite with elemental fluorine. A novel method for synthesis of .alpha.-fluorohydrins. The Journal of Organic Chemistry 1980, 45 (4), 672-678.
47. Uddin, M. J.; Crews, B. C.; Ghebreselasie, K.; Huda, I.; Kingsley, P. J.; Ansari, M. S.; Tantawy, M. N.; Reese, J.; Marnett, L. J., Fluorinated COX-2 inhibitors as agents in PET imaging of inflammation and cancer. Cancer prevention research (Philadelphia, Pa.) 2011, 4 (10), 1536-45.
48. Endo, K.; Yoon, B. I.; Pairojkul, C.; Demetris, A. J.; Sirica, A. E., ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. Hepatology 2002, 36 (2), 439-450.
49. Cooper, D. L.; Murrell, D. E.; Conder, C. M.; Palau, V. E.; Campbell, G. E.; Lynch, S. P.; Denham, J. W.; Hanley, A. V.; Bullins, K. W.; Panus, P. C.; Singh, K.; Harirforoosh, S., Exacerbation of celecoxib-induced renal injury by concomitant administration of misoprostol in rats. PloS one 2014, 9 (2), e89087.
50. Paul, S.; Khanapur, S.; Rybczynska, A. A.; Kwizera, C.; Sijbesma, J. W.; Ishiwata, K.; Willemsen, A. T.; Elsinga, P. H.; Dierckx, R. A.; van Waarde, A., Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine. Journal of Nuclear Medicine 2011, 52 (8), 1293-300.
51. Kalgutkar, A. S.; Crews, B. C.; Rowlinson, S. W.; Marnett, A. B.; Kozak, K. R.; Remmel, R. P.; Marnett, L. J., Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (2), 925-30.
52. Zhang, H.; Li, Z.; Wang, K., Combining sorafenib with celecoxib synergistically inhibits tumor growth of non-small cell lung cancer cells in vitro and in vivo. Oncology reports 2014, 31 (4), 1954-60.
53. Rodriguez-Antona, C.; Ingelman-Sundberg, M., Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006, 25 (11), 1679-91.
54. Katas, H.; Hussain, Z.; Awang, S. A., Bovine serum albumin-loaded chitosan/dextran nanoparticles: preparation and evaluation of ex vivo colloidal stability in serum. Journal of Nanomaterials 2013, 2013, 34-34.
55. Bao, A.; Goins, B.; Klipper, R.; Negrete, G.; Phillips, W. T., Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. The Journal of pharmacology and experimental therapeutics 2004, 308 (2), 419-25.
56. Chen, D. L.; Schuster, D. P., Imaging Pulmonary Inflammation with Positron Emission Tomography:  A Biomarker for Drug Development. Molecular Pharmaceutics 2006, 3 (5), 488-495.
57. Farias, R. O.; Garabalino, M. A.; Ferraris, S.; Santa Maria, J.; Rovati, O.; Lange, F.; Trivillin, V. A.; Monti Hughes, A.; Pozzi, E. C.; Thorp, S. I.; Curotto, P.; Miller, M. E.; Santa Cruz, G. A.; Bortolussi, S.; Altieri, S.; Portu, A. M.; Saint Martin, G.; Schwint, A. E.; Gonzalez, S. J., Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina. Medical physics 2015, 42 (7), 4161.
58. Lei, J.; Wu, X.; Zhu, Q., Copper-Catalyzed Trifluoromethylalkynylation of Isocyanides. Organic Letters 2015, 17 (10), 2322-2325.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *