帳號:guest(13.59.58.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李佩諠
作者(外文):Pei-Hsuan Lee
論文名稱(中文):雙酚A影響人類子宮內膜細胞microRNAs調控與癌化之關連性
論文名稱(外文):Bisphenol A dysregulated microRNAs for carcinogenesis in human endometrial cells
指導教授(中文):莊淳宇
指導教授(外文):Chun-Yu Chuang
口試委員(中文):廖憶純
林靖愉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012504
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:99
中文關鍵詞:雙酚A子宮內膜癌microRNA基因網絡DNA損傷Hedgehog信號癌化
外文關鍵詞:bisphenol Aendometrial cancermicroRNAgene networkDNA damagehedgehog signalingcarcinogenesis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:148
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雙酚A (bisphenol A; BPA)是一種塑化劑,廣泛添加於聚碳酸酯(polycarbonate; PC)或環氧樹酯(epoxy)塑膠製品、牙科填充物,以及食品罐頭內層塗料。BPA為一種環境荷爾蒙,會與雌激素競爭雌激素受體,影響內分泌作用和細胞生長發育。子宮內膜增生為子宮內膜癌發生之危險因子之一。根據本研究室偵測結果,子宮內膜增生之婦女其血液中BPA含量較正常婦女為高;也發現BPA會誘發人類子宮內膜癌細胞(human endometrial cancer RL95-2 cells)發炎反應及促使細胞增生之基因表現。已有研究指出子宮內膜癌症患者有異常microRNAs (miRNAs)表現。因此,本研究欲探討BPA是否會影響miRNAs調控,改變基因表現,誘發人類子宮內膜細胞癌化反應。
本研究目的為:一、BPA暴露是否干擾miRNAs及其調控基因mRNAs之表現;二、評估BPA暴露影響之基因表現是否與子宮內膜癌患者中異常調節之基因功能有相關性。三、BPA暴露影響之miRNA調控基因路徑是否導致癌化。為找出BPA暴露可能造成子宮內膜癌之相關miRNAs及其目標基因,本研究分別以miRNA晶片(Phalanx Human miRNA OneArray® v4 chip)和mRNA晶片(Phalanx Human OneArray® v5 chip),偵測人類子宮內膜癌細胞RL95-2 cells暴露BPA (10、103和105 nM),導致具有表現差異之miRNA和mRNA (differentially expressed genes; DEG)。將BPA暴露之miRNA chip中有表現差異之miRNAs,對應以文獻回顧篩選人類子宮內膜癌癌化相關之miRNAs,並參照miRDB網站預測這些miRNA之目標基因,再對照mRNA chip找出受BPA暴露影響和人類子宮內膜癌癌化之目標DEG。以Kyoto Encyclopedia of Genes and Genomes database (KEGG)將DEG做功能分類,並以Cytoscape套裝軟體建構基因網絡分析。
從KEGG pathway和Cytoscape基因網絡分析顯示,BPA暴露會促使miR-149下調,影響DNA修復基因ARF6 (ADP-ribosylation factor 6)、TP53 (tumor protein p53)及CCNE2 (cyclin E2)表現,造成細胞週期改變。BPA暴露使miR-141和miR-205表現增加,下調腫瘤抑制基因,如PRC1 (polycomb repressor complex1)和SMAD2 (SMAD family member 2)。BPA暴露增加miR-107表現,會抑制hedgehog路徑中的負調節因子,如SUFU (suppressor of fused homolog)和GLI3 (GLI family zinc finger 3),進而活化hedgehog路徑,促使癌化過程發生。進一步以miR-149 mimic轉染反證,上調miR-149時,BPA暴露後ARF6、TP53及CCNE2基因恢復正常表現,與對照組無顯著差異。轉染miR-107 inhibitor抑制miR-107時,BPA暴露對於SUFU和GLI3表現仍有下降趨勢,但下調程度減少。本研究發現BPA暴露影響miR-149、miR-141、miR-205及miR-107調控,造成細胞週期失調,影響DNA修復功能,造成Hedgehog訊息路徑傳導異常,可能誘發子宮內膜細胞之癌化發生。
Bisphenol A (BPA) is a plasticizer wildly used in polycarbonate (PC) and epoxy plastic products, dental sealants and inner coating of cans. BPA is an endocrine disrupt compounds (EDCs) able to compete with estrogen for estrogen receptor (ER) binding to affect cell function. Endometrial hyperplasia is one of the risk factors to lead to endometrial cancer. Our previous study found endometrial hyperplasia patients have higher serum BPA levels than normal women, and BPA exposure induces inflammatory response and increases gene expression of cell proliferation in human endometrial cancer RL95-2 cells. Aberrant microRNAs (miRNAs) regulation has been identified in endometrial cancer (EC) patients. Therefore, this study assumed BPA exposure disrupted miRNA regulation and its gene expression in human endometrial cells corresponding to EC carcinogenesis.
The purposes of this study were (1) to investigate whether BPA exposure affected miRNAs and their target genes in human endometrial cells; (2) to assess whether BPA exposure affected gene functions relevant to EC; and (3) to figure out whether BPA exposure dysregulated miRNA-mediated pathways to lead to endometrial carcinogenesis. This study used Phalanx Human miRNA OneArray® v4 chip and Phalanx Human mRNA OneArray® v5 chip to respectively determine differentially expressed miRNAs and mRNAs (DEGs) in human endometrial cancer RL95-2 cells exposure to 10, 103 and 105 nM BPA. In addition, this study performed a literature survey to explore miRNAs relevant to human EC progression. The differentially expressed miRNAs both presented in the miRNA chip of BPA exposure and in the literature survey were selected to further predict the potential target genes using miRDB website. These potential target genes corresponded to DEGs in the mRNA chip of BPA exposure were the candidate DEGs regarding to BPA exposure and EC progression. The candidate DEGs were analyzed for ontology and gene network construction using KEGG (Kyoto Encyclopedia of Genes and Genomes database) and Cytoscape software.
According to the analysis of KEGG pathway and Cytoscape gene network, this study identified that BPA exposure reduced miR-149 expression to down-regulate miR-149-mediated DNA repair gene ARF6 (ADP-ribosylation factor 6), TP53 (tumor protein p53) and up-regulate CCNE2 (cyclin E2) to interrupt cell cycle. BPA induced miR-141 and miR-205 to down-regulate their target genes PRC1 (polycomb repressor complex1) and SMAD2 (SMAD family member 2) in tumor suppression. BPA also increased miR-107 and suppressed hedgehog signaling regulatory factors SUFU (suppressor of fused homolog) and GLI3 (GLI family zinc finger 3) to activate hedgehog signaling for the carcinogenesis. Furthermore, this study transfected miR-149 mimic and miR-107 inhibitor to confirm the effect of BPA exposure on miRNA regulation and gene expression. After miR-149 mimic transfection in RL95-2 cells, the gene expression of ARF6, TP53 and CCNE2 displayed no significant differences between BPA exposure and control. After miR-107 inhibitor transfection in RL95-2 cells, the gene expression of SUFU and GLI3 were mildly reduced in BPA exposure.
This study discovered that BPA exposure affected miR-141, -107, -205 and miR-149 to disrupt cell cycle arrest, suppress DNA repair system, and activate hedgehog signaling, which has been reported to participate in cancer development and metastasis. These findings provided an insight into the potential epigenetic mechanism of BPA exposure on the risk of endometrial carcinogenesis.
Catalogue
摘 要 V
Abstract VII
Chapter 1 Introduction 1
Chapter 2 Paper review 3
2.1 Endometrial cancer (EC) 3
2.2 Endocrine disruptor compounds 4
2.3 Bisphenol A 5
2.4 microRNAs 8
2.5 Aberrant miRNAs in endometrial cancer 9
2.6 Aberrant miRNAs in exposure to BPA 11
Chapter 3 Aim of study 13
Chapter 4 Materials and methods 16
4.1 Cell culture 16
4.2 Total RNA extraction 16
4.3 miRNA and mRNA microarray determination 17
4.4 Literature survey of miRNAs regulation in human endometrial cancer 19
4.5 In analysis of gene ontology, pathway and gene network 20
4.6 Reverse transcription polymerase chain reaction (PCR) and quantitative real-time PCR for mRNA determination 21
4.7 Reverse transcription polymerase chain reaction and quantitative real-time PCR for miRNA determination 22
4.8 Transfection of miRNA mimic and miRNA inhibitor in exposure to BPA 25
4.9 Statistical analysis 26
Chapter 5 Results 28
5.1 Literature survey for miRNAs corresponding to endometrial cancer 28
5.2 Selection of candidate miRNAs corresponding to BPA exposure and EC 30
5.3 Prediction of target genes regulated by candidate miRNAs relevant to BPA exposure and EC 30
5.4 Analysis of GO term for DEGs in BPA exposure and corresponded to EC 33
5.5 Analysis of KEGG pathway and Cytoscape gene network for DEGs in BPA exposure and corresponded to EC 34
5.6 Gene expression of RL95-2 cells exposure to BPA in analysis of mRNA chip and q-PCR 39
5.7 miRNA expression of RL95-2 cells exposure to BPA in analysis of miRNA chip and qPCR 45
5.8 Dose selection of miRNA mimic/inhibitor transfection 48
5.8.1 miR-149 expression after miR-149 mimic transfection 48
5.8.2 miR-107 expression after miR-107 inhibitor transfection 49
5.9 miR-149 expression after miR-149 mimic transfection in exposure to BPA 51
5.10 miR-107 expression after miR-107 inhibitor transfection in exposure to BPA 53
5.11 ARF6, TP53 and CCNE2 gene expression after miR-149 mimic transfection in RL95-2 cells exposure to BPA 55
5.12 Gene expression after miR-107 inhibitor transfection in RL95-2 cells exposure to BPA 59
Chapter 6 Discussion 63
6.1 BPA altered miRNAs expression 63
6.2 BPA decreased miR-149 expression for cell cycle interruption 66
6.3 BPA dysregulated TP53, CCNE2 and CDKN1A expression for DNA damage response 67
6.4 BPA increased miR-141 and miR-205 expression for tumor progression 69
6.5 BPA induced miR-107 expression for hedgehog signaling activation 72
6.6 BPA dysregulated miRNAs for carcinogenesis in endometrial cells 75
Chapter 7 Conclusion 82
References 83
1. Bergeron RM, Thompson TB, Leonard LS, Pluta L, Gaido KW: Estrogenicity of bisphenol A in a human endometrial carcinoma cell line. Mol Cell Endocrinol 1999, 150(1-2):179-187.
2. Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Francon B et al: Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 2005, 11(9):936-943.
3. Dolinoy DC, Huang D, Jirtle RL: Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 2007, 104(32):13056-13061.
4. Zhang Q, Xu X, Li T, Lu Y, Ruan Q, Lu Y, Wang Q, Dong F, Yang Y, Zhang G: Exposure to bisphenol-A affects fear memory and histone acetylation of the hippocampus in adult mice. Hormones and behavior 2014, 65(2):106-113.
5. Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL, Marsit CJ: Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reproductive toxicology 2010, 29(4):401-406.
6. Santamaria X, Taylor H: MicroRNA and gynecological reproductive diseases. Fertility and sterility 2014, 101(6):1545-1551.
7. Mozos A, Catasus L, D'Angelo E, Serrano E, Espinosa I, Ferrer I, Pons C, Prat J: The FOXO1-miR27 tandem regulates myometrial invasion in endometrioid endometrial adenocarcinoma. Human pathology 2014, 45(5):942-951.
8. Karmon AE, Cardozo ER, Rueda BR, Styer AK: MicroRNAs in the development and pathobiology of uterine leiomyomata: does evidence support future strategies for clinical intervention? Human reproduction update 2014.
9. Li Y, Yao L, Liu F, Hong J, Chen L, Zhang B, Zhang W: Characterization of microRNA expression in serous ovarian carcinoma. International journal of molecular medicine 2014, 34(2):491-498.
10. Vaksman O, Trope C, Davidson B, Reich R: Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis 2014.
11. Braza-Boils A, Mari-Alexandre J, Gilabert J, Sanchez-Izquierdo D, Espana F, Estelles A, Gilabert-Estelles J: MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Human reproduction 2014, 29(5):978-988.
12. Jung YW, Jeon YJ, Rah H, Kim JH, Shin JE, Choi DH, Cha SH, Kim NK: Genetic variants in microRNA machinery genes are associate with idiopathic recurrent pregnancy loss risk. PloS one 2014, 9(4):e95803.
13. Lacey JV, Jr., Chia VM: Endometrial hyperplasia and the risk of progression to carcinoma. Maturitas 2009, 63(1):39-44.
14. Hiroi H, Tsutsumi O, Takeuchi T, Momoeda M, Ikezuki Y, Okamura A, Yokota H, Taketani Y: Differences in serum bisphenol a concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocrine journal 2004, 51(6):595-600.
15. Klinge CM: miRNAs and estrogen action. Trends in endocrinology and metabolism: TEM 2012, 23(5):223-233.
16. Singh S, Li SS: Epigenetic effects of environmental chemicals bisphenol a and phthalates. International journal of molecular sciences 2012, 13(8):10143-10153.
17. Nicolaije KA, Ezendam NP, Vos MC, Boll D, Pijnenborg JM, Kruitwagen RF, Lybeert ML, van de Poll-Franse LV: Follow-up practice in endometrial cancer and the association with patient and hospital characteristics: a study from the population-based PROFILES registry. Gynecologic oncology 2013, 129(2):324-331.
18. Oldenburg CS, Boll D, Nicolaije KA, Vos MC, Pijnenborg JM, Coebergh JW, Beijer S, van de Poll-Franse LV, Ezendam NP: The relationship of body mass index with quality of life among endometrial cancer survivors: a study from the population-based PROFILES registry. Gynecologic oncology 2013, 129(1):216-221.
19. Leao RB, Andrade L, Vassalo J, Antunes A, Jr., Pinto-Neto A, Costa-Paiva L: Differences in estrogen and progesterone receptor expression in endometrial polyps and atrophic endometrium of postmenopausal women with and without exposure to tamoxifen. Molecular and clinical oncology 2013, 1(6):1055-1060.
20. Ali AT: Reproductive factors and the risk of endometrial cancer. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society 2014, 24(3):384-393.
21. Banno K, Kisu I, Yanokura M, Masuda K, Kobayashi Y, Ueki A, Tsuji K, Yamagami W, Nomura H, Susumu N et al: Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics. Biochemistry research international 2012, 2012:738274.
22. Kucinska M, Murias M: [Cosmetics as source of xenoestrogens exposure]. Przeglad lekarski 2013, 70(8):647-651.
23. Fujimoto N: Effects of environmental estrogenic compounds on growth of a transplanted estrogen responsive pituitary tumor cell line in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2003, 41(12):1711-1717.
24. Helmestam M, Stavreus-Evers A, Olovsson M: Cadmium chloride alters mRNA levels of angiogenesis related genes in primary human endometrial endothelial cells grown in vitro. Reproductive toxicology 2010, 30(3):370-376.
25. Mitsumori K, Shimo T, Onodera H, Takagi H, Yasuhara K, Tamura T, Aoki Y, Nagata O, Hirose M: Modifying effects of ethinylestradiol but not methoxychlor on N-ethyl-N-nitrosourea-induced uterine carcinogenesis in heterozygous p53-deficient CBA mice. Toxicological sciences : an official journal of the Society of Toxicology 2000, 58(1):43-49.
26. McLachlan JA, Simpson E, Martin M: Endocrine disrupters and female reproductive health. Best practice & research Clinical endocrinology & metabolism 2006, 20(1):63-75.
27. Kang SC, Lee BM: DNA methylation of estrogen receptor alpha gene by phthalates. Journal of toxicology and environmental health Part A 2005, 68(23-24):1995-2003.
28. Hung CH, Yang SN, Kuo PL, Chu YT, Chang HW, Wei WJ, Huang SK, Jong YJ: Modulation of cytokine expression in human myeloid dendritic cells by environmental endocrine-disrupting chemicals involves epigenetic regulation. Environmental health perspectives 2010, 118(1):67-72.
29. Choi JS, Oh JH, Park HJ, Choi MS, Park SM, Kang SJ, Oh MJ, Kim SJ, Hwang SY, Yoon S: miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol. Reproductive biology and endocrinology : RB&E 2011, 9:126.
30. Teng Y, Manavalan TT, Hu C, Medjakovic S, Jungbauer A, Klinge CM: Endocrine disruptors fludioxonil and fenhexamid stimulate miR-21 expression in breast cancer cells. Toxicological sciences : an official journal of the Society of Toxicology 2013, 131(1):71-83.
31. Toloubeydokhti T, Pan Q, Luo X, Bukulmez O, Chegini N: The expression and ovarian steroid regulation of endometrial micro-RNAs. Reproductive sciences 2008, 15(10):993-1001.
32. Vogel SA: The politics of plastics: the making and unmaking of bisphenol a "safety". American journal of public health 2009, 99 Suppl 3:S559-566.
33. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G: Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environmental health perspectives 2010, 118(8):1055-1070.
34. Bushnik T, Haines D, Levallois P, Levesque J, Van Oostdam J, Viau C: Lead and bisphenol A concentrations in the Canadian population. Health reports 2010, 21(3):7-18.
35. Kim EJ, Lee D, Chung BC, Pyo H, Lee J: Association between urinary levels of bisphenol-A and estrogen metabolism in Korean adults. The Science of the total environment 2014, 470-471:1401-1407.
36. Zhang T, Sun H, Kannan K: Blood and urinary bisphenol A concentrations in children, adults, and pregnant women from china: partitioning between blood and urine and maternal and fetal cord blood. Environmental science & technology 2013, 47(9):4686-4694.
37. Kaddar N, Bendridi N, Harthe C, de Ravel MR, Bienvenu AL, Cuilleron CY, Mappus E, Pugeat M, Dechaud H: Development of a radioimmunoassay for the measurement of Bisphenol A in biological samples. Analytica chimica acta 2009, 645(1-2):1-4.
38. Chou WC, Chen JL, Lin CF, Chen YC, Shih FC, Chuang CY: Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environmental health : a global access science source 2011, 10:94.
39. Gao X, Liang Q, Chen Y, Wang HS: Molecular mechanisms underlying the rapid arrhythmogenic action of bisphenol A in female rat hearts. Endocrinology 2013, 154(12):4607-4617.
40. Weinhouse C, Anderson OS, Bergin IL, Vandenbergh DJ, Gyekis JP, Dingman MA, Yang J, Dolinoy DC: Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environmental health perspectives 2014, 122(5):485-491.
41. Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, Palimeri S, Panidis D, Diamanti-Kandarakis E: Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. The Journal of clinical endocrinology and metabolism 2011, 96(3):E480-484.
42. Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y: Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocrine journal 2004, 51(2):165-169.
43. Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM: Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PloS one 2014, 9(3):e90332.
44. Helmestam M, Davey E, Stavreus-Evers A, Olovsson M: Bisphenol A affects human endometrial endothelial cell angiogenic activity in vitro. Reproductive toxicology 2014, 46:69-76.
45. Lathi RB, Liebert CA, Brookfield KF, Taylor JA, Vom Saal FS, Fujimoto VY, Baker VL: Conjugated bisphenol A (BPA) in maternal serum in relation to miscarriage risk. Fertility and sterility 2014.
46. Brieno-Enriquez MA, Reig-Viader R, Cabero L, Toran N, Martinez F, Roig I, Garcia Caldes M: Gene expression is altered after bisphenol A exposure in human fetal oocytes in vitro. Molecular human reproduction 2012, 18(4):171-183.
47. Prins GS, Birch L, Tang WY, Ho SM: Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reproductive toxicology 2007, 23(3):374-382.
48. Li G, Chang H, Xia W, Mao Z, Li Y, Xu S: F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. Toxicology letters 2014.
49. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS: In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Hormones & cancer 2010, 1(3):146-155.
50. Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, Vos J, Verloop R, van de Wetering M, Guryev V, Takada S et al: Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome research 2006, 16(10):1289-1298.
51. Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS biology 2005, 3(3):e85.
52. Guarnieri DJ, DiLeone RJ: MicroRNAs: a new class of gene regulators. Annals of medicine 2008, 40(3):197-208.
53. Sharma S, Kelly TK, Jones PA: Epigenetics in cancer. Carcinogenesis 2010, 31(1):27-36.
54. Lee H, Choi HJ, Kang CS, Lee HJ, Lee WS, Park CS: Expression of miRNAs and PTEN in endometrial specimens ranging from histologically normal to hyperplasia and endometrial adenocarcinoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2012, 25(11):1508-1515.
55. Pan Q, Luo X, Toloubeydokhti T, Chegini N: The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Molecular human reproduction 2007, 13(11):797-806.
56. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D: MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(5):1604-1609.
57. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC: Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation research 2007, 100(8):1164-1173.
58. Mazer C: Endocrine regulation of menstruation and menstrual irregularities. Bulletin Chicago Medical Society 1946, 49(11):147-150.
59. Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA, Giudice LC: Global gene profiling in human endometrium during the window of implantation. Endocrinology 2002, 143(6):2119-2138.
60. Jabbour HN, Kelly RW, Fraser HM, Critchley HO: Endocrine regulation of menstruation. Endocrine reviews 2006, 27(1):17-46.
61. Lee K, Jeong J, Tsai MJ, Tsai S, Lydon JP, DeMayo FJ: Molecular mechanisms involved in progesterone receptor regulation of uterine function. The Journal of steroid biochemistry and molecular biology 2006, 102(1-5):41-50.
62. Sherwin R, Catalano R, Sharkey A: Large-scale gene expression studies of the endometrium: what have we learnt? Reproduction 2006, 132(1):1-10.
63. Groothuis PG, Dassen HH, Romano A, Punyadeera C: Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human. Human reproduction update 2007, 13(4):405-417.
64. Horcajadas JA, Pellicer A, Simon C: Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Human reproduction update 2007, 13(1):77-86.
65. Pan Q, Chegini N: MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Seminars in reproductive medicine 2008, 26(6):479-493.
66. Yuan DZ, Yu LL, Qu T, Zhang SM, Zhao YB, Pan JL, Xu Q, He YP, Zhang JH, Yue LM: Identification and Characterization of Progesterone- and Estrogen-Regulated MicroRNAs in Mouse Endometrial Epithelial Cells. Reproductive sciences 2014.
67. Wang Y, Adila S, Zhang X, Dong Y, Li W, Zhou M, Li T: [MicroRNA expression signature profile and its clinical significance in endometrioid carcinoma]. Zhonghua bing li xue za zhi Chinese journal of pathology 2014, 43(2):88-94.
68. Ye W, Xue J, Zhang Q, Li F, Zhang W, Chen H, Huang Y, Zheng F: MiR-449a functions as a tumor suppressor in endometrial cancer by targeting CDC25A. Oncology reports 2014.
69. Diaz-Martin J, Diaz-Lopez A, Moreno-Bueno G, Castilla MA, Rosa-Rosa JM, Cano A, Palacios J: A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. The Journal of pathology 2014, 232(3):319-329.
70. Zhang X, Dong Y, Ti H, Zhao J, Wang Y, Li T, Zhang B: Down-regulation of miR-145 and miR-143 might be associated with DNA methyltransferase 3B overexpression and worse prognosis in endometrioid carcinomas. Human pathology 2013, 44(11):2571-2580.
71. Luthra R, Singh RR, Luthra MG, Li YX, Hannah C, Romans AM, Barkoh BA, Chen SS, Ensor J, Maru DM et al: MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 2008, 27(52):6667-6678.
72. Yan GJ, Yu F, Wang B, Zhou HJ, Ge QY, Su J, Hu YL, Sun HX, Ding LJ: MicroRNA miR-302 inhibits the tumorigenicity of endometrial cancer cells by suppression of Cyclin D1 and CDK1. Cancer letters 2014, 345(1):39-47.
73. Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, Wei Z: Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer letters 2012, 314(2):155-165.
74. Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, Deng F, Zhu M, Zhu W, Wu R et al: Curcumin Modulates miR-19/PTEN/AKT/p53 Axis to Suppress Bisphenol A-induced MCF-7 Breast Cancer Cell Proliferation. Phytotherapy research : PTR 2014.
75. Tilghman SL, Bratton MR, Segar HC, Martin EC, Rhodes LV, Li M, McLachlan JA, Wiese TE, Nephew KP, Burow ME: Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PloS one 2012, 7(3):e32754.
76. Veiga-Lopez A, Luense LJ, Christenson LK, Padmanabhan V: Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 2013, 154(5):1873-1884.
77. Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, Kamath S, Chen DT, Dressman H, Lancaster JM: MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecologic oncology 2008, 110(2):206-215.
78. Chung TK, Cheung TH, Huen NY, Wong KW, Lo KW, Yim SF, Siu NS, Wong YM, Tsang PT, Pang MW et al: Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. International journal of cancer Journal international du cancer 2009, 124(6):1358-1365.
79. Balch C, Matei DE, Huang TH, Nephew KP: Role of epigenomics in ovarian and endometrial cancers. Epigenomics 2010, 2(3):419-447.
80. Hiroki E, Akahira J, Suzuki F, Nagase S, Ito K, Suzuki T, Sasano H, Yaegashi N: Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer science 2010, 101(1):241-249.
81. Devor EJ, Hovey AM, Goodheart MJ, Ramachandran S, Leslie KK: microRNA expression profiling of endometrial endometrioid adenocarcinomas and serous adenocarcinomas reveals profiles containing shared, unique and differentiating groups of microRNAs. Oncology reports 2011, 26(4):995-1002.
82. Wu W, Lin Z, Zhuang Z, Liang X: Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation 2009, 18(1):50-55.
83. Castilla MA, Moreno-Bueno G, Romero-Perez L, Van De Vijver K, Biscuola M, Lopez-Garcia MA, Prat J, Matias-Guiu X, Cano A, Oliva E et al: Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. The Journal of pathology 2011, 223(1):72-80.
84. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H et al: MicroRNA signatures in human ovarian cancer. Cancer research 2007, 67(18):8699-8707.
85. Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST, Ghoshal K: Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. The Journal of biological chemistry 2008, 283(48):33394-33405.
86. Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS, Huang TH: Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer research 2009, 69(23):9038-9046.
87. Kim JY, Tavare S, Shibata D: Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(49):17739-17744.
88. Cohn DE, Fabbri M, Valeri N, Alder H, Ivanov I, Liu CG, Croce CM, Resnick KE: Comprehensive miRNA profiling of surgically staged endometrial cancer. American journal of obstetrics and gynecology 2010, 202(6):656 e651-658.
89. Ratner ES, Tuck D, Richter C, Nallur S, Patel RM, Schultz V, Hui P, Schwartz PE, Rutherford TJ, Weidhaas JB: MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecologic oncology 2010, 118(3):251-257.
90. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW: Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer research 2010, 70(1):367-377.
91. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K et al: Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(19):7004-7009.
92. Zhou L, Qi X, Potashkin JA, Abdul-Karim FW, Gorodeski GI: MicroRNAs miR-186 and miR-150 down-regulate expression of the pro-apoptotic purinergic P2X7 receptor by activation of instability sites at the 3'-untranslated region of the gene that decrease steady-state levels of the transcript. The Journal of biological chemistry 2008, 283(42):28274-28286.
93. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK: MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Molecular cancer therapeutics 2009, 8(5):1055-1066.
94. Cao XL, Perez-Locas C, Dufresne G, Clement G, Popovic S, Beraldin F, Dabeka RW, Feeley M: Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food additives & contaminants Part A, Chemistry, analysis, control, exposure & risk assessment 2011, 28(6):791-798.
95. Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, Scheers H, Godderis L, Hoet P, Van Meerbeek B: How much do resin-based dental materials release? A meta-analytical approach. Dental materials : official publication of the Academy of Dental Materials 2011, 27(8):723-747.
96. Welshons WV, Nagel SC, Thayer KA, Judy BM, Vom Saal FS: Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicology and industrial health 1999, 15(1-2):12-25.
97. Wozniak AL, Bulayeva NN, Watson CS: Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environmental health perspectives 2005, 113(4):431-439.
98. Wang Y, Zheng X, Zhang Z, Zhou J, Zhao G, Yang J, Xia L, Wang R, Cai X, Hu H et al: MicroRNA-149 inhibits proliferation and cell cycle progression through the targeting of ZBTB2 in human gastric cancer. PloS one 2012, 7(10):e41693.
99. Schweitzer JK, D'Souza-Schorey C: A requirement for ARF6 during the completion of cytokinesis. Experimental cell research 2005, 311(1):74-83.
100. Strachan T, Read AP. In: Human molecular genetics. 2nd edn. New York; 1999.
101. Tong L, Wu S: ROS and p53 in Regulation of UVB-induced HDM2 Alternative Splicing. Photochemistry and photobiology 2014.
102. Jeon BN, Choi WI, Yu MY, Yoon AR, Kim MH, Yun CO, Hur MW: ZBTB2, a novel master regulator of the p53 pathway. The Journal of biological chemistry 2009, 284(27):17935-17946.
103. Bindhumol V, Chitra KC, Mathur PP: Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 2003, 188(2-3):117-124.
104. Tiwari D, Kamble J, Chilgunde S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L, Vanage G: Clastogenic and mutagenic effects of bisphenol A: an endocrine disruptor. Mutation research 2012, 743(1-2):83-90.
105. Levine AJ, Momand J, Finlay CA: The p53 tumour suppressor gene. Nature 1991, 351(6326):453-456.
106. Vousden KH, Lane DP: p53 in health and disease. Nature reviews Molecular cell biology 2007, 8(4):275-283.
107. Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P, Zhang LJ, Thorne RF, Wilmott J, Scolyer RA et al: MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(38):15840-15845.
108. Caldon CE, Sergio CM, Burgess A, Deans AJ, Sutherland RL, Musgrove EA: Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell cycle 2013, 12(4):606-617.
109. Caldon CE, Sergio CM, Sutherland RL, Musgrove EA: Differences in degradation lead to asynchronous expression of cyclin E1 and cyclin E2 in cancer cells. Cell cycle 2013, 12(4):596-605.
110. Liu X, Cao L, Ni J, Liu N, Zhao X, Wang Y, Zhu L, Wang L, Wang J, Yue Y et al: Differential BCCIP gene expression in primary human ovarian cancer, renal cell carcinoma and colorectal cancer tissues. International journal of oncology 2013, 43(6):1925-1934.
111. Pezdirc M, Zegura B, Filipic M: Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2013, 59:386-394.
112. Xiao W, Ou C, Qin J, Xing F, Sun Y, Li Z, Qiu J: CBX8, a novel DNA repair protein, promotes tumorigenesis in human esophageal carcinoma. International journal of clinical and experimental pathology 2014, 7(8):4817-4826.
113. Lu W, Qu JJ, Li BL, Lu C, Yan Q, Wu XM, Chen XY, Wan XP: Overexpression of p21-activated kinase 1 promotes endometrial cancer progression. Oncology reports 2013, 29(4):1547-1555.
114. Lu W, Xia YH, Qu JJ, He YY, Li BL, Lu C, Luo X, Wan XP: p21-activated kinase 4 regulation of endometrial cancer cell migration and invasion involves the ERK1/2 pathway mediated MMP-2 secretion. Neoplasma 2013, 60(5):493-503.
115. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM: MicroRNA-regulated pathways associated with endometriosis. Molecular endocrinology 2009, 23(2):265-275.
116. Richly H, Aloia L, Di Croce L: Roles of the Polycomb group proteins in stem cells and cancer. Cell death & disease 2011, 2:e204.
117. Vallian S, Sedaghat M, Nassiri I, Frazmand A: Methylation status of p16 INK4A tumor suppressor gene in Iranian patients with sporadic breast cancer. Journal of cancer research and clinical oncology 2009, 135(8):991-996.
118. Rayess H, Wang MB, Srivatsan ES: Cellular senescence and tumor suppressor gene p16. International journal of cancer Journal international du cancer 2012, 130(8):1715-1725.
119. Abd Al Kader L, Oka T, Takata K, Sun X, Sato H, Murakami I, Toji T, Manabe A, Kimura H, Yoshino T: In aggressive variants of non-Hodgkin lymphomas, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4 dominates over PRC1.2. Virchows Archiv : an international journal of pathology 2013, 463(5):697-711.
120. Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB, Nigg EA, Barr FA: KIF14 and citron kinase act together to promote efficient cytokinesis. The Journal of cell biology 2006, 172(3):363-372.
121. Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ, Chen HW: Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Molecular cancer research : MCR 2014, 12(4):539-549.
122. Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M: Downregulation of KIF23 suppresses glioma proliferation. Journal of neuro-oncology 2012, 106(3):519-529.
123. Murakami H, Ito S, Tanaka H, Kondo E, Kodera Y, Nakanishi H: Establishment of new intraperitoneal paclitaxel-resistant gastric cancer cell lines and comprehensive gene expression analysis. Anticancer research 2013, 33(10):4299-4307.
124. Fischer M, Grundke I, Sohr S, Quaas M, Hoffmann S, Knorck A, Gumhold C, Rother K: p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes. PloS one 2013, 8(5):e63187.
125. Su N, Qiu H, Chen Y, Yang T, Yan Q, Wan X: miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncology reports 2013, 29(6):2297-2302.
126. Xie H, Zhao Y, Caramuta S, Larsson C, Lui WO: miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PloS one 2012, 7(10):e46990.
127. Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J: Smads as intracellular mediators of airway inflammation. Experimental lung research 2004, 30(3):223-250.
128. Lin HY, Wang HM, Li QL, Liu DL, Zhang X, Liu GY, Qian D, Zhu C: Expression of Smad2 and Smad4, transforming growth factor-beta signal transducers in rat endometrium during the estrous cycle, pre-, and peri-implantation. Animal reproduction science 2004, 80(3-4):303-316.
129. Kim MR, Park DW, Lee JH, Choi DS, Hwang KJ, Ryu HS, Min CK: Progesterone-dependent release of transforming growth factor-beta1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Molecular human reproduction 2005, 11(11):801-808.
130. Lee HR, Hwang KA, Choi KC: The estrogen receptor signaling pathway activated by phthalates is linked with transforming growth factor-beta in the progression of LNCaP prostate cancer models. International journal of oncology 2014, 45(2):595-602.
131. Martin-Garrido A, Williams HC, Lee M, Seidel-Rogol B, Ci X, Dong JT, Lassegue B, Martin AS, Griendling KK: Transforming growth factor beta inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation. PloS one 2013, 8(11):e79657.
132. Kim YW, Kim EY, Jeon D, Liu JL, Kim HS, Choi JW, Ahn WS: Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. Drug design, development and therapy 2014, 8:293-314.
133. Gu YQ, Gong G, Xu ZL, Wang LY, Fang ML, Zhou H, Xing H, Wang KR, Sun L: miRNA profiling reveals a potential role of milk stasis in breast carcinogenesis. International journal of molecular medicine 2014, 33(5):1243-1249.
134. Kodahl AR, Lyng MB, Binder H, Cold S, Gravgaard K, Knoop AS, Ditzel HJ: Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: A case control study. Molecular oncology 2014, 8(5):874-883.
135. Ruel L, Therond PP: Variations in Hedgehog signaling: divergence and perpetuation in Sufu regulation of Gli. Genes & development 2009, 23(16):1843-1848.
136. Szczepny A, Wagstaff KM, Dias M, Gajewska K, Wang C, Davies RG, Kaur G, Ly-Huynh J, Loveland KL, Jans DA: Overlapping binding sites for importin beta1 and Suppressor of Fused on Glioma-associated oncogene homolog 1 (Gli1) regulate its nuclear localisation. The Biochemical journal 2014.
137. Taipale J, Beachy PA: The Hedgehog and Wnt signalling pathways in cancer. Nature 2001, 411(6835):349-354.
138. Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R: The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes & development 2010, 24(7):670-682.
139. Heard ME, Simmons CD, Simmen FA, Simmen RC: Kruppel-like factor 9 deficiency in uterine endometrial cells promotes ectopic lesion establishment associated with activated notch and hedgehog signaling in a mouse model of endometriosis. Endocrinology 2014, 155(4):1532-1546.
140. Katoh M, Nakagama H: FGF receptors: cancer biology and therapeutics. Medicinal research reviews 2014, 34(2):280-300.
141. Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM, Lobo-Ruppert SM: Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 2006, 25(4):609-621.
142. Velcheti V: Hedgehog signaling is a potent regulator of angiogenesis in small cell lung cancer. Medical hypotheses 2007, 69(4):948-949.
143. Lee SW, Moskowitz MA, Sims JR: Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblasts. International journal of molecular medicine 2007, 19(3):445-451.
144. Katoh Y, Katoh M: Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Current molecular medicine 2009, 9(7):873-886.
145. Athar M, Li C, Tang X, Chi S, Zhang X, Kim AL, Tyring SK, Kopelovich L, Hebert J, Epstein EH, Jr. et al: Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer research 2004, 64(20):7545-7552.
146. Kim KH, Kim JM, Choi YL, Shin YK, Lee HC, Seong IO, Kim BK, Chae SW, Chung YS, Kim SH: Expression of sonic hedgehog signaling molecules in normal, hyperplastic and carcinomatous endometrium. Pathology international 2009, 59(5):279-287.
147. Cobellis L, Colacurci N, Trabucco E, Carpentiero C, Grumetto L: Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. Biomedical chromatography : BMC 2009, 23(11):1186-1190.
148. Muenzer RW, Girgis ZA, Rigal RD, Bennett AD: An acceptable yearly screening device for endometrial carcinoma. American journal of obstetrics and gynecology 1974, 119(1):31-38.
149. Birnbaum LS, Fenton SE: Cancer and developmental exposure to endocrine disruptors. Environmental health perspectives 2003, 111(4):389-394.
150. Soto AM, Brisken C, Schaeberle C, Sonnenschein C: Does cancer start in the womb? altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. Journal of mammary gland biology and neoplasia 2013, 18(2):199-208.
151. Prins GS, Ye SH, Birch L, Ho SM, Kannan K: Serum bisphenol A pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reproductive toxicology 2011, 31(1):1-9.
152. Prins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, Huang K, Nelles JL, Ho SM, Walker CL et al: Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 2014, 155(3):805-817.
153. Hemmati PG, Gillissen B, von Haefen C, Wendt J, Starck L, Guner D, Dorken B, Daniel PT: Adenovirus-mediated overexpression of p14(ARF) induces p53 and Bax-independent apoptosis. Oncogene 2002, 21(20):3149-3161.
154. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH: Regulation of HDM2 activity by the ribosomal protein L11. Cancer cell 2003, 3(6):577-587.
155. Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene 2005, 24(17):2899-2908.
156. Wang S, Li W, Xue Z, Lu Y, Narsinh K, Fan W, Li X, Bu Q, Wang F, Liang J et al: Molecular imaging of p53 signal pathway in lung cancer cell cycle arrest induced by cisplatin. Molecular carcinogenesis 2013, 52(11):900-907.
157. Masamha CP, Benbrook DM: Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells. Cancer research 2009, 69(16):6565-6572.
158. Chen X, Xue F, Xie T, Luo C: Silencing of the Smad nuclear interacting protein 1 (SNIP1) by siRNA inhibits proliferation and induces apoptosis in pituitary adenoma cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013, 34(5):3071-3076.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *