帳號:guest(18.217.199.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉安潔
作者(外文):Liu, An-Chieh
論文名稱(中文):探討骨髓衍生細胞於放射治療之腦腫瘤內所扮演的角色
論文名稱(外文):The roles of Bone Marrow-derived cells on radiation therapy for brain tumor.
指導教授(中文):江啟勳
口試委員(中文):江啟勳
洪志宏
張建文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012503
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:骨髓衍生細胞
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
放射治療是神經膠質瘤的治療中很重要的一個療法。然而對腫瘤施於高劑量的放射治療後,腫瘤卻經常在放射治療照射區域再度復發,使得神經膠質瘤的治癒率非常的低,因此降低腫瘤在放射治療後的復發率是很急需解決的問題。在本實驗室之前的研究指出,放射治療會增加腫瘤相關巨噬細胞與基質衍生細胞因子(SDF-1)的表現增加,進而影響腫瘤的侵襲性。因此本研究主要目的在於進一步探討阻斷SDF-1/CXCR4作用的藥物AMD3100是否能增強放射療效,並觀察骨髓衍生細胞(Bone-marrow derived cells)在放射治療後不同天數上腦腫瘤微環境的變化。結果顯示跟病危時期相比在放射治療後第4天,高 (32 Gy)、 低 (8 Gy) 劑量放射治療組別的單核球CD11b、M2型巨噬細胞CD68聚集程度及血管周邊細胞的密度都有顯著提升,而在高劑量放射治療組血管密度與M1型巨噬細胞F4/80則有顯著的下降。而在藥物治療完後一天,CD68及CD11b在各組別的表現,都比放射治療第4天有著顯著下降的表現,反而在F4/80聚集程度普遍有顯著的增加,但血管密度及血管周圍細胞重合程度大多也維持為顯著下降。在化療藥物及放射治療合併治療組別顯示AMD3100能有效阻斷骨髓衍生細胞進入腫瘤細胞區域,並能顯著的降低血管密度及血管周邊細胞包圍血管的表現。此外,結果顯示使用藥物AM3100本身即可延長動物的存活,而在合併兩種不同高低劑量的放射治療結果顯示只能有效的能增強高劑量的放射治療效果並確實延長動物的存活時間。
此研究顯示腫瘤再度復發會刺激骨髓衍生細胞進入並活化成M2型巨噬細胞CD68幫助腫瘤再度生長。骨髓衍生細胞會隨著腫瘤在經過放射治療後腫瘤微環境的改變被活化成不同腫瘤相關巨噬細胞幫助其生長,更加確定骨髓衍生細胞在腫瘤經過放射治療後在腫瘤細胞區域所扮演的角色。了解骨髓衍生細胞在放射治療後所扮演的角色有助日後對腫瘤復發的治療能有更大的突破,以期達到更加腫瘤的治療效果。
Radiotherapy plays a major role in the treatment of glioblastoma multiforme (GBM).The high doses of radiation delivered in the treatment of patients with GBM, the tumors invariably recur within the irradiation field, resulting in a low cure rate. Therefore, reducing the recurrence rate after radiation therapy is urgent problem. Lab early study has demonstrated that radiation-induced brain tumor invasiveness is associated with the level of SDF-1 production by tumor cells. This study further examined if AMD3100, a drug to block the interaction of SDF-1 with its receptor CXCR4, could enhance the efficacy of radiation therapy and explored the change of tumor microenvironments after radiotherapy in a murine astrocytoma tumor model, ALTS1C1. Our first result demonstrated that the administration of AMD3100 could prolong the surviving time of tumor-bearing mice after 32 Gy of radiation therapy, but not 8 Gy of radiation therapy. The immunohistochemical (IHC) staining study further showed that the number of CD11b+ TAMs or CD68+ M2 macrophages, and the density of pericyte cells were significantly increased at 4 days after radiation therapy, but the microvascular density (MVD) and the number of F4/80+ M1 macrophages were significantly decreased. The administration of AMD3100 s significantly decreased the number of CD68+ or CD11b+ macrophages, but increased the number of F4/80+ macrophages. The MVD and the pericyte coverage rate were also decreased significantly. In summary, this study shows that tumor recurrence stimulates the bone marrow-derived cells to enter and the CD68 positive activated alternative M2 macrophages help regrowth of the tumor and the administration of AMD3100following radiotherapy can effectively block the recruitment of bone marrow-derived cells, reduce the density of blood vessels and pericyte cell coverage, and enhance the efficacy of high dose of radiation therapy for brain tumor.
內容
摘要 2
Abstract 3
致謝 4
1.緒論 6
1.1 癌症 6
1.2 神經膠質瘤(Gliomas) 6
1.3 腫瘤微環境(Tumor microenvironment) 7
1.3.2 免疫調控 8
1.4骨髓衍生細胞與單核球 8
1.5 AMD3100(普樂沙福, Plerixafor) 10
1.5.1 AMD3100之副作用 10
2.材料與方法 12
2.1細胞培養 12
2.2 動物實驗 12
3.實驗結果 18
3.探討治療後小鼠存活率的增加 18
3.2.探討放射治療後小鼠腦腫瘤內單核球CD11b的變化 18
3.3探討M 2型巨噬細胞在放射治療之腦腫瘤微環境所扮演的角色 22
3.4探討M 1型巨噬細胞F4/80在放射治療之腦腫瘤微環境所扮演的角色 24
3.6血管中平滑肌細胞的觀察 31
4.討論 32
5.圖表 36
6.引用文獻 76

1. Akesson, A., B. Julin, and A. Wolk, Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res, 2008. 68(15): p. 6435-41.
2. Raizer, J.J., HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. J Neurooncol, 2005. 74(1): p. 77-86.
3. Liang, B.C., et al., Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. Journal of Neurosurgery, 1991. 75(4): p. 559-563.
4. Garcia-Barros, M., et al., Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science, 2003. 300(5622): p. 1155-9.
5. Ogawa, K., et al., Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res, 2007. 67(9): p. 4016-21.
6. Wang, S.C., et al., Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One, 2013. 8(8): p. e69182.
7. Dvorak, H.F., et al., Tumor microenvironment and progression. J Surg Oncol, 2011. 103(6): p. 468-74.
8. Cretu, A. and P.C. Brooks, Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol, 2007. 213(2): p. 391-402.
9. Witz, I.P. and O. Levy-Nissenbaum, The tumor microenvironment in the post-PAGET era. Cancer Lett, 2006. 242(1): p. 1-10.
10. Environmental Protection: Studies Highlight Importance of Tumor Microenvironment. National Cancer Institute, 2004: p. 1120-1121.
11. Nussenbaum, F. and I.M. Herman, Tumor angiogenesis: insights and innovations. J Oncol, 2010. 2010: p. 132641.
12. Baluk, P., et al., TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest, 2009. 119(10): p. 2954-64.
13. Jeremy Grunstein, W.G.R., Odile Mathieu-Costello, Douglas Hanahan, and Randall S. Johnson2, Tumor-derived Expression of Vascular Endothelial Growth Factor Is a Critical Factor in Tumor Expansion and Vascular Function1. CANCER RESEARCH 1999. 59: p. 1592-1598.
14. Mechanisms of angiogenesis and arteriogenesis. NATURE MEDICINE, 2000: p. 389-395.
15. Jain†, P.C.R.K., Angiogenesis in cancer and other diseases. NATURE, 2000. 407: p. 249-257.
16. Di Tomaso, E., et al., Glioblastoma recurrence after cediranib therapy in patients: lack of "rebound" revascularization as mode of escape. Cancer Res, 2011. 71(1): p. 19-28.
17. Gerhardt, H. and C. Betsholtz, Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res, 2003. 314(1): p. 15-23.
18. M. Chekenya*, P.Ø.E., F. Thorsen*, B. B. Tysnes*, S. Al-Sarraj†, T. A. Read*, T. Furmanek*, and J.M.L. R. Mahesparan*, A. M. Butt§, G. J. Pilkington† and R. Bjerkvig*, The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathology and Applied Neurobiology, 2002. 28: p. 367–380.
19. Schafer, M. and S. Werner, Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol, 2008. 9(8): p. 628-38.
20. Garcia-Lora, A., I. Algarra, and F. Garrido, MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol, 2003. 195(3): p. 346-55.
21. Hamilton, J.A., Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol, 2008. 8(7): p. 533-44.
22. Sica, A., et al., Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 2006. 42(6): p. 717-27.
23. Ceradini, D.J., et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med, 2004. 10(8): p. 858-64.
24. Lyden2, S.R.D., Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. NATURE MEDICINE, 2003. 9: p. 702-712.
25. TOMONO TAKAHASHI, C.K., HARUCHIKAMASUDA, DONGHUI CHEN,, M.K. MARCY SILVER, MEREDITHMAGNER,, and J.M.I.T. ASAHARA, Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. NATURE MEDICINE, 1999. 4: p. 434-438.
26. Donald Orlic², J.K., Stefano Chimenti*, Igor Jakoniuk*,, et al., Bone marrow cells regenerate infarctedmyocardium. 2001.
27. Erler, J.T., et al., Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 2009. 15(1): p. 35-44.
28. Condeelis, J. and J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 2006. 124(2): p. 263-6.
29. Werb, L.M.C.Z., Inflammation and cancer. NATURE, 2002. 420: p. 860-867.
30. Bailey, A.S., et al., Myeloid lineage progenitors give rise to vascular endothelium. Proc Natl Acad Sci U S A, 2006. 103(35): p. 13156-61.
31. Moldovan, N.I., et al., Contribution of Monocytes/Macrophages to Compensatory Neovascularization : The Drilling of Metalloelastase-Positive Tunnels in Ischemic Myocardium. Circulation Research, 2000. 87(5): p. 378-384.
32. Marianna B. Ruzinova, R.A.S., 4 William Gerald,2 James E. Egan,4 Pier Paolo Pandolfi,3 and K.M. Shahin Rafii, 3 Vivek Mittal,4,* and Robert Benezra1,*, Effect of angiogenesis inhibition by Id loss and the contribution
of bone-marrow-derived endothelial cells in spontaneous
murine tumors. CANCER CELL, 2003. 4: p. 277-289.
33. De Palma M1, V.M., Roca C, Naldini L., Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Medicine 2003. 9: p. 789-95.
34. DAVID LYDEN1, et al., Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. NATURE MEDICINE, 2001. 7: p. 1194-1201.
35. Jessica A. Bertout, S.A.P.a.M.C.S., The impact of O2 availability on human cancer. NATuRE REvIEWS, 2008. 8: p. 967-975.
36. Du, R., et al., HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 2008. 13(3): p. 206-20.
37. Wang, Y., et al., Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. Journal of Molecular and Cellular Cardiology, 2006. 41(3): p. 478-487.
38. Jin, D.K., et al., Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 2006. 12(5): p. 557-567.
39. Grunewald, M., et al., VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006. 124(1): p. 175-89.
40. Aghi, M., et al., Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res, 2006. 66(18): p. 9054-64.
41. Kopfstein, L. and G. Christofori, Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cellular and Molecular Life Sciences, 2006. 63(4): p. 449-468.
42. Rahat, M.A., H. Bitterman, and N. Lahat, Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol, 2011. 2: p. 45.
43. Lin, E.Y., et al., Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res, 2006. 66(23): p. 11238-46.
44. Chen, F.H., et al., Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res, 2009. 15(5): p. 1721-9.
45. Werno, C., et al., Knockout of HIF-1alpha in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis, 2010. 31(10): p. 1863-72.
46. Imtiyaz, H.Z., et al., Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest, 2010. 120(8): p. 2699-714.
47. Hagemann, T., et al., "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med, 2008. 205(6): p. 1261-8.
48. Ratcliffe, P.J., HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest, 2007. 117(4): p. 862-5.
49. Thea D. Tlsty1 and Lisa M. Coussens1, Tumor Stroma and Regulation of Cancer Development. Annu. Rev. Pathol. Mech. Dis, 2006: p. 119-150.
50. Anja MuÈ ller*²³, B.H., Hortensia Soto*, Nianfeng Ge*, Daniel Catron*, Matthew E. Buchanan*, Terri McClanahan*, and W.Y. Erin Murphy*, Stephan N. Wagner§, Jose Luis Barrerak, Alejandro Mohark¶, Emma Vera steguik & Albert Zlotnik*, Involvement of chemokine receptors in breast cancer metastasis. 2001.
51. Azab, A.K., et al., CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood, 2009. 113(18): p. 4341-51.
52. Gao, C., et al., TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy. Cancer Res, 2013. 73(24): p. 7211-21.
53. Kioi, M., et al., Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest, 2010. 120(3): p. 694-705.
54. Meng Yang, J.R., 1 Ping Jiang,1 Lingna Li,1 Abdool R. Moossa,2 and Robert M. Hoffman1,2, Transgenic Nude Mouse with Ubiquitous Green Fluorescent Protein Expression as a Host for Human Tumors. Cancer Res, 2004. 64: p. 8651–8656.
55. Nishimura, Y., et al., CXCR4 antagonist AMD3100 accelerates impaired wound healing in diabetic mice. J Invest Dermatol, 2012. 132(3 Pt 1): p. 711-20.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *