帳號:guest(3.128.226.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):艾哈曼
作者(外文):Ahmad Usama Mohammad Mahmoud
論文名稱(中文):The Effect of Over-Expression of Matrix Metalloproteinase-2 on Murine Brain Tumor Growth and its responses against the cytotoxicity of Ionizing Radiation and Sigma-2 Receptor Agonist PB221 Drug
指導教授(中文):江啟勳
指導教授(外文):Chiang, .Chi-Shiun
口試委員(中文):江啟勳
Hong, Ji-Hong
張建文
口試委員(外文):Prof.Chi-Shiun Chiang
Hong, Ji-Hong
Prof.Chien-Wen Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012422
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:65
中文關鍵詞:ALTS1C1MMP2PB221放射治療
外文關鍵詞:Radiotherapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:58
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
Malignant tumors remain the main death-caused reason of human at present. The novel strategies are necessary to be developed for improving the efficacy of cancer therapy. This study aimed to explore the effects of tumor microenvironment on cancer therapy. In order to achieve this goal, the tumor microenvironment of ALTS1C1 brain tumor was regulated by over-expressing matrix metalloproteinase-2 (MMP-2) expression followed by combination of two therapeutic approaches; radiotherapy and chemotherapy (PB221- sigma-2 receptor agonist). The study revealed that MMP2 expression which overexpressed by a bicistronic vector approach led to shortage in the median survival days of brain tumor-bearing mice. MMP2ov tumors had a higher invasive and migration ability in comparison to ALTS1C1 tumors. The microvascular density (MVD) in MMP2ov tumors was increased and vessel function was affected as shown by increasing pericytes and collagen IV coverage on blood vessels. This study also demonstrated that the overexpressing of MMP-2 diminished the anti-tumor effects of the neoadjuvant chemoradiotherapy in vitro. ALTS1C1-MMP2 cell line (ALTS1C1-MMP2ov) was more radioresistant than ALTS1C1 cell line. The administration of PB221 enhanced the efficiency of the radiotherapy in decreasing the surviving of ALTS1C1 & ALTS1C1-MMP2ov cell lines in a similar fashion. This effect appeared to be additive effect and indicated that PB221 and irradiation exert their effects at different target sites. In summary, this study provides an applicable strategy that can improve the efficiency of brain tumor treatment by combining chemotherapy with radiotherapy. This study also demonstrated the critical role of MMP2 on invasiveness of brain tumors and recruitment of pericytes into brain tumors microenvironment, which makes MMP2 a target gene for inhibition to enhance the sensitivity of brain tumors to chemoradiotherapy.
DEDICATION…………………………………………………………...……………. III
ACKNOWLEDGEMENT………………………………………………………………V
CONTENTS……………………………………………………….……………...…… VI
LIST OF FIGURES………………………………………………..…………………. VII
LIST OF ABBREVIATIONS………………………………………...………………. IX
ABSTRACT……………………………………………………………...…………… XII
INTRODUCTION………………………………………………………….………….. 01
MATERIALS & METHODS…………………………………………………………. 09
RESULTS………………………………………………………………………….……21
DISCUSSION.………………………………………………………………………..... 32
CONCLUSION & FUTURE WORK……………………………………………..…. 38
FIGURES……………………………………………………………………………… 40
REFERENCES……………………………………………………………..……….… 59
1. National Cancer Institute Statistical Report. Brain and Other Nervous System Tumors Diagnosed from 18 SEER Geographic Areas in 2005-2009. 2011.]. http://seer.cancer.gov/statfacts/html/brain.html.

2. Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain pathology. 1993;3(3):255-68.].

3. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. Journal of Neuropathology & Experimental Neurology. 2002;61(3):215-25.].

4. Kleihues P, Soylemezoglu F, Schäuble B, Scheithauer BW, Burger PC. Histopathology, classification, and grading of gliomas. Glia. 1995;15(3):211-21.].

5. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica. 2007;114(2):97-109.].

6. Report ABTAS. Brain Tumor Statistic. 2013.]. http://www.abta.org/about-us/news/brain-tumor-statistics/.

7. Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991. Journal of neurosurgery. 1998;88(1):1-10.].

8. Davis FG, McCarthy BJ, Berger MS. Centralized databases available for describing primary brain tumor incidence, survival, and treatment: Central Brain Tumor Registry of the United States; Surveillance, Epidemiology, and End Results; and National Cancer Data Base. Neuro-oncology. 1999;1(3):205-11.].

9. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. Journal of Clinical Oncology. 1999;17(8):2572-.].

10. Ballman KV, Buckner JC, Brown PD, Giannini C, Flynn PJ, LaPlant BR, et al. The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro-oncology. 2007;9(1):29-38.].

11. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The lancet oncology. 2009;10(5):459-66.].
12. Giese A, Bjerkvig R, Berens M, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. Journal of clinical oncology. 2003;21(8):1624-36.].

13. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer. 2002;2(3):161-74.].

14. Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nature Reviews Cancer. 2003;3(7):489-501.].

15. Stetler-Stevenson WG. Type IV collagenases in tumor invasion and metastasis. Cancer and Metastasis Reviews. 1990;9(4):289-303.].

16. Ray J, Stetler-Stevenson W. The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. European Respiratory Journal. 1994;7(11):2062-72.].

17. ROSENBERG GA. Matrix metalloproteinases in brain injury. Journal of neurotrauma. 1995;12(5):833-42.].

18. Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao H-Q, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 γ 2 correlates with the invasiveness of human glioma. The American journal of pathology. 2005;166(3):877-90.].

19. Coussens LM, Werb Z. Matrix metal loproteinases and the development of cancer. Chemistry & biology. 1996;3(11):895-904.].

20. Forsyth P, Wong H, Laing TD, Rewcastle N, Morris D, Muzik H, et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. British journal of cancer. 1999;79(11-12):1828.].

21. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, et al. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clinical & experimental metastasis. 1996;14(1):35-42.].

22. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI. Mechanism of cell surface activation of 72-kDa type IV collagenase isolation of the activated form of the membrane metalloprotease. Journal of Biological Chemistry. 1995;270(10):5331-8.].

23. Morrison CJ, Butler GS, Bigg HF, Roberts CR, Soloway PD, Overall CM. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. Journal of Biological Chemistry. 2001;276(50):47402-10.].

24. Deryugina E, Luo G, Reisfeld R, Bourdon M, Strongin A. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer research. 1996;17(5A):3201-10.].
25. Ahonen M, Baker AH, Kähäri V-M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer research. 1998;58(11):2310-5.].

26. Ala‐aho R, Johansson N, Baker AH, Kähäri VM. Expression of collagenase‐3 (MMP‐13) enhances invasion of human fibrosarcoma HT‐1080 cells. International journal of cancer. 2002;97(3):283-9.].

27. Beliën AT, Paganetti PA, Schwab ME. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. The Journal of cell biology. 1999;144(2):373-84.].

28. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. The Journal of cell biology. 1997;139(7):1861-72.].

29. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer research. 1998;58(5):1048-51.].

30. Malik MT, Kakar SS. Regulation of angiogenesis and invasion by human Pituitary tumor transforming gene (PTTG) through increased expression and secretion of matrix metalloproteinase-2 (MMP-2). Molecular cancer. 2006;5(1):61.].

31. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proceedings of the National Academy of Sciences. 2000;97(8):3884-9.].

32. McQuibban GA, Gong J-H, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 2000;289(5482):1202-6.].

33. Wang S-C, Hong J-H, Hsueh C, Chiang C-S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Laboratory Investigation. 2011;92(1):151-62.].

34. Chiang C-S, Fu SY, Wang S-C, Yu C-F, Chen F-H, Lin C-M, et al. Irradiation promotes an M2 macrophage phenotype in tumor hypoxia. Frontiers in oncology. 2012;2.].

35. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. International Journal of Radiation Oncology* Biology* Physics. 2004;59(4):928-42.].

36. Savage JR. Radiation-Induced Chromosome Damage in Man. International Journal of Radiation Biology. 1984;46(5):654-.].

37. Vaux DL. CED-4—the third horseman of apoptosis. Cell. 1997;90(3):389-90.].

38. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annual review of immunology. 1998;16(1):395-419.].

39. Nagata S. Apoptosis by death factor. cell. 1997;88(3):355-65.].

40. Azzariti A, Colabufo NA, Berardi F, Porcelli L, Niso M, Simone GM, et al. Cyclohexylpiperazine derivative PB28, a σ2 agonist and σ1 antagonist receptor, inhibits cell growth, modulates P-glycoprotein, and synergizes with anthracyclines in breast cancer. Molecular cancer therapeutics. 2006;5(7):1807-16.].

41. Berardi F, Abate C, Ferorelli S, Colabufo NA, Perrone R. 1-Cyclohexylpiperazine and 3, 3-Dimethylpiperidine Derivatives as Sigma-1 (sig1) and Sigma-2 (sig2) Receptor Ligands: A Review. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents). 2009;9(3):205-19.].

42. Huang YS, Lu HL, Zhang LJ, Wu Z. Sigma‐2 Receptor Ligands and Their Perspectives in Cancer Diagnosis and Therapy. Medicinal research reviews. 2014;34(3):532-66.].

43. Furudoi A, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, et al. Clinical significance of human erythrocyte glucose transporter 1 expression at the deepest invasive site of advanced colorectal carcinoma. Oncology. 2001;60(2):162-9.].

44. Younes M, Brown R, Mody D, Fernandez L, Laucirica R. GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer research. 1994;15(6B):2895-8.].

45. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer research. 2013;73(5):1524-35.].

46. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998;93(3):411-22.].

47. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proceedings of the National Academy of Sciences. 2000;97(8):4052-7.].

48. Wesseling P, van der Laak JA, de Leeuw H, Ruiter DJ, Burger PC. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme: computer-assisted image analysis of whole-tumor sections. Journal of neurosurgery. 1994;81(6):902-9.].

49. Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature medicine. 1995;1(2):149-53.].
50. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. The American journal of pathology. 1997;151(5):1417.].

51. Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer and Metastasis Reviews. 2007;26(3-4):489-502.].

52. Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, et al. Vessel co‐option in primary human tumors and metastases: an obstacle to effective anti‐angiogenic treatment? Cancer medicine. 2013;2(4):427-36.].

53. Franco M, Paez-Ribes M, Cortez E, Casanovas O, Pietras K. Use of a mouse model of pancreatic neuroendocrine tumors to find pericyte biomarkers of resistance to anti-angiogenic therapy. Hormone and metabolic research. 2011;43(12):884-9.].

54. Jäälinojä J, Herva R, Korpela M, Höyhtyä M, Turpeenniemi-Hujanen T. Matrix metalloproteinase 2 (MMP-2) immunoreactive protein is associated with poor grade and survival in brain neoplasms. Journal of neuro-oncology. 2000;46(1):81-90.].

55. Komatsu K, Nakanishi Y, Nemoto N, Hori T, Sawada T, Kobayashi M. Expression and quantitative analysis of matrix metalloproteinase-2 and-9 in human gliomas. Brain tumor pathology. 2004;21(3):105-12.].

56. Wang M, Wang T, Liu S, Yoshida D, Teramoto A. The expression of matrix metalloproteinase-2 and-9 in human gliomas of different pathological grades. Brain tumor pathology. 2003;20(2):65-72.].

57. Deryugina EI, Bourdon MA, Luo G-X, Reisfeld RA, Strongin A. Matrix metalloproteinase-2 activation modulates glioma cell migration. Journal of Cell Science. 1997;110(19):2473-82.].

58. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Current opinion in cell biology. 2001;13(5):534-40.].

59. Platten M, Wick W, Weller M. Malignant glioma biology: Role for TGF‐β in growth, motility, angiogenesis, and immune escape. Microscopy research and technique. 2001;52(4):401-10.].

60. Rundhaug JE. Matrix Metalloproteinases, Angiogenesis, and Cancer Commentary re: AC Lockhart et al., Reduction of Wound Angiogenesis in Patients Treated with BMS-275291, a Broad Spectrum Matrix Metalloproteinase Inhibitor. Clin. Cancer Res., 9: 00–00, 2003. Clinical Cancer Research. 2003;9(2):551-4.].

61. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, et al. An essential role for ectodomain shedding in mammalian development. Science. 1998;282(5392):1281-4.].

62. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow–derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481-90.].
63. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature cell biology. 2000;2(10):737-44.].

64. Jansen M, de Witt Hamer PC, Witmer AN, Troost D, van Noorden CJ. Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain research reviews. 2004;45(3):143-63.].

65. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. cell. 1996;86(3):353-64.].

66. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64(2):327-36.].

67. Gatto C, Rieppi M, Borsotti P, Innocenti S, Ceruti R, Drudis T, et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clinical cancer research. 1999;5(11):3603-7.].

68. Martin DC, Sanchez-Sweatman OH, Ho A, Inderdeo DS, Tsao M-S, Khokha R. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Laboratory investigation; a journal of technical methods and pathology. 1999;79(2):225-34.].

69. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell. 2001;107(6):789-800.].

70. Rodríguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proceedings of the National Academy of Sciences. 2001;98(22):12485-90.].

71. Wang D, Anderson JC, Gladson CL. The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain pathology. 2005;15(4):318-26.].

72. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American journal of pathology. 2002;160(3):985-1000.].

73. Choudhury SR, Karmakar S, Banik NL, Ray SK. Role of angiogenesis in the pathogenesis of glioblastoma and antiangiogenic therapies for controlling glioblastoma. Glioblastoma: Springer; 2010. p. 217-41.

74. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine. 2005;352(10):987-96.].

75. Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. γH2AX foci analysis for monitoring DNA double-strand break repair. Cell cycle. 2010;9(4):662-9.].

76. Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutation Research/Reviews in Mutation Research. 2010;704(1):78-87.].

77. Rothkamm K, Löbrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proceedings of the National Academy of Sciences. 2003;100(9):5057-62.].

78. Costes SV, Ponomarev A, Chen JL, Nguyen D, Cucinotta FA, Barcellos-Hoff MH. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS computational biology. 2007;3(8):e155.].

79. Schmid TE, Dollinger G, Beisker W, Hable V, Greubel C, Auer S, et al. Differences in the kinetics of γ-H2AX fluorescence decay after exposure to low and high LET radiation. International journal of radiation biology. 2010;86(8):682-91.].
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *