帳號:guest(18.118.193.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張薰勻
作者(外文):Chang, Hsun-Yun
論文名稱(中文):二元官能基自組裝單層膜修飾表面之生物應用
論文名稱(外文):Biological Application of Surfaces Tailored with Binary Self-Assembled Monolayers (SAMs)
指導教授(中文):薛景中
曾繁根
指導教授(外文):Shyue, Jing-Jong
Tseng, Fan-Gang
口試委員(中文):康佳正
虞邦英
陳培菱
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011861
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:112
中文關鍵詞:自組裝單層膜表面電位基因轉殖細胞貼附
外文關鍵詞:self-assembled monolayerssurface potentialAutransfectioncell adhesion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:100
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
自組裝單層膜為改變表面性質的強大技術,且廣泛地應用在學術研究與工業應用.材料的選擇無論是塊材還是奈米粒子,自組裝單層摩的組成提供廣泛的選擇以利於實驗的要求.對於生物的應用上,硫醇修飾金基材的自組裝單層膜系統被廣泛的使用來發展生物晶片、生物感測器、基因傳輸者等研究。於是研究細胞與有著特殊表面性質的自組裝單層膜修飾之金材料之間的交互作用為有其必要。隨著二元官能基自組裝單層膜修飾表面之金材料的發展,細胞與修飾過的材料表面之交互作用得以更進一步的研究。在此研究當中,帶有一系列不同表面電位的二元官能基自組裝單層膜修飾表面之金奈米粒子與金表面塊材均製備出來以進行帶有不同表面電位的二元官能基自組裝單層膜修飾表面之金材料對於生物應用的研究。

在金奈米粒子的生物應用部分,研究結果發現帶有不同表面電位的電位的二元官能基自組裝單層膜修飾表面之金奈米粒子對細胞不帶有毒性,且能被細胞所攝取.金奈米粒子於細胞內部的影像使用掃描透射電子顯微鏡呈現。細胞對於金奈米粒子的攝取量與金奈米粒子的表面電位為正相關。被攝取後的金奈米粒子在細胞中的位置將進一步的利用飛行時間二次離子質譜儀研究.而對於帶有不同表面電位的金奈米粒子作為運送者來傳送帶有表面螢光蛋白質的質體的能力,研究結果發現金奈米粒子的表面電位搭配細胞包吞作用過程中的酸鹼值會影響到運送的結果,帶有特定表面電位的金奈米粒子能在核內體保護質體不被降解並在包吞作用後於細胞質中釋出質體使其作用,而發揮最大的傳送能力。

另外,纖維母細胞與上皮細胞於二元官能基自組裝單層膜修飾表面之金基材的細胞行為也進行研究,包含細胞的貼附、增殖與形態。實驗結果發現,隨著材料的表面電位增加,纖維母細胞與上皮細胞的貼附數量均增加,且上皮細胞的貼附數量比纖維母細胞更為顯著。而表面電位對於兩種細胞的增殖行為並沒有影響。而對於細胞表面形貌,表面電位不會使上皮細胞的形貌改變,而會改變纖維母細胞的形貌。表面電位對於細胞種類間的差異可從細胞外間質主要的蛋白質組成解釋,相較於黏連蛋白為細胞外間質主要蛋白的纖維母細胞,層黏蛋白為細胞外間質主要蛋白的上皮細胞表現較高的貼附數量與不變的細胞形貌,這是由於帶正電的層黏蛋白於材料表面上的吸附量較高以利於上皮細胞的貼附。相較之下,由於帶負電的黏連蛋白在材料表面上的吸附量較少,使得以黏連蛋白作為主要細胞外間質蛋白的纖維母細胞必須改變其形貌來迎合不均勻的黏連蛋白區域之表面。

關鍵字:自組裝單層膜、表面電位、金、轉殖、細胞貼附
Being a powerful technique of modifying the surface property, Self-assembled monolayers (SAMs) has been employed for academia research and industrial application. The substrate can be bulk or nanoparticles; the SAMs composition provides wild selection for specific requirement. For biological application, the SAM system of thiols on Au susbtrate is of great interest on the development of biochip, biosensor, gene carriers, etc. Studying the interaction between cells and SAM-modified Au substrate with specific surface property has gained attention. With the development of binary SAM-modified Au substrates, the interaction between cell and SAM-modified Au substrates could be studied. In this work, binary SAM-modified Au substrates with a series of surface potential were made, including Au nanoparticles and bulks with Au surface. It was found that binary SAM-modified AuNPs have low cytotoxicity and can be internalized by cells that confirmed by STEM images, and the internalized AuNPs increased with increasing surface potential of AuNPs. The cellular distribution would be further studied using time-of-flight secondary ion mass spectroscopy (ToF-SIMS). For the capability of binary SAM–modified AuNPs as carriers to deliver DNA for expression, it was found to be relevant to the surface potential of AuNPs with respect to the change of pH value during delivery process. The highest delivery happened when AuNPs with moderate surface potential that can adsorb and protect DNA in endosome and release DNA in cytoplasm.

Moreover, cell behavior of fibroblasts and epithelial cells on binary SAM-modified Au surfaces were examined, including adhesion, proliferation and morphology. The results showed that the adhesion density of epithelial cells increased with increasing surface potential, which is similar to but varied more significantly compared with fibroblasts. The proliferation rate is found to be independent of surface potential in both cell types. Furthermore, epithelial cells show no morphological change with respect to surface potential, whereas the morphology of the fibroblasts clearly changed with the surface potential. These differences between the cell types were rationalized by considering the difference in ECM composition. Laminin-dominant epithelial cells showed higher adhesion density and less morphological change than did fibronectin-dominant fibroblasts because the more significant adsorption of positively charged laminin on the surface enhanced the adhesion of epithelial cells. In contrast, due to the dominance of negatively charged fibronectin that adsorbed weakly on the surface, fibroblasts had to change their morphology to fit the inhomogeneous fibronectin-adsorbed area.
ABSTRACT i
CONTENTS iii
FIGURE CAPTIONS v
TABLE CAPTIONS ix
Chapter 1. INTRODUCTION 1
1.1 Self-Assembled Monolayers (SAMs) 1
1.2 Biological Application of SAM-Modified Au Nanoparticles 3
1.2.1 Medical Application of gold nanoparticles 3
1.2.2 Surface potential of SAM-modified Au nanoparticles 6
1.2.3 Cellular distribution of SAM-modified AuNPs 9
1.2.4 Motivation 17
1.3 Biological Application of SAM-Modified Surfaces 19
1.3.1 Cell adhesive substrates 19
1.3.2 Cell behaviors on SAM-modified surfaces 20
1.3.3 Motivation 30
Chapter 2. EXPERIMENTAL METHODS 32
2.1 Cell Culture 32
2.1.1 HEK293T Cells 32
2.1.2 NIH3T3 Cells 32
2.1.3 HepG2 Cells 32
2.2 Binary SAM-Modified AuNPs 33
2.2.1 Synthesis and characterization of binary SAM-modified gold nanoparticles 33
2.2.2 Cytotoxicity of binary SAM-modified AuNPs 33
2.2.3 Internalization of binary SAM-modified AuNPs 34
2.2.4 Efficiency of molecular transportation using binary SAM-modified AuNPs 35
2.2.5 Subcellular location of SAMs-modified AuNPs 35
2.3 Binary SAM-modified Au Surfaces of Substrates 37
2.3.1 Preparation of binary SAM-modified Au surfaces 37
2.3.2 Cell adhesion and proliferation on binary SAM-modified Au surfaces 37
2.3.3 Cell morphology on binary SAM-modified Au surfaces 38
Chapter 3. RESULTS AND DISCUSSION 39
3.1 Binary SAM-Modified AuNPs 39
3.1.1 Cytotoxicity of binary SAM-modified AuNPs 39
3.1.2 Internalization of binary SAM-modified AuNPs 41
3.1.3 Efficiency of binary SAM-modified AuNPs as carriers for biological molecules 45
3.1.4 Biodistribution of AuNPs within HEK293T cells 50
3.1.4.1 2D images of molecule distribution using TOF-SIMS 50
3.1.4.1.1 The ion images of lipids within HEK293T cells 51
3.1.4.1.2 The secondary ion images of carbohydrates within HEK293T cells 58
3.1.4.1.3 The secondary ion images of amino acids and nucleic acids within HEK293T cells 61
3.1.4.1.5 The subcellular location of AuNPs 65
3.1.4.2 3D images of HEK293T cells with internalized AuNPs 69
3.1.4.2.1 3D images of positive ions within HEK293T cells 69
3.1.4.2.2 3D images of negative ions within HEK293T cells 73
3.2 Binary SAM-Modified Au Surfaces 79
3.2.1 NIH3T3 fibroblasts 79
3.2.1.1 System of binary SAM-modified Au surfaces 79
3.2.1.2 Effect of surface potential on adhesion of fibroblasts 79
3.2.1.3 Effect of surface potential on proliferation of fibroblasts 82
3.2.1.4 Effect of surface potential on morphology of fibroblasts 85
3.2.2 HepG2 and HEK293T epithelial cells 89
3.2.2.1 Effect of surface potential on adhesion of epithelial cells 89
3.2.2.2 Effect of surface potential on epithelial cell proliferation 97
Chapter 4. CONCLUSIONS 105
4.1 Biological Application of Binary SAM-Modified Au Nanoparticles 105
4.2 Biological Application of Binary SAM-Modified Au-coated Substrate 106
Reference 108
(1) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chemical reviews 2005, 105, 1103.
(2) Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. Journal of Colloid Science 1946, 1, 513.
(3) Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides, G. M.; Nuzzo, R. G. Langmuir : the ACS journal of surfaces and colloids 1995, 11, 813.
(4) Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl Chem 1991, 63, 821.
(5) Allara, D. L.; Nuzzo, R. G. Langmuir : the ACS journal of surfaces and colloids 1985, 1, 52.
(6) Sagiv, J. Journal of the American Chemical Society 1980, 102, 92.
(7) Bain, C. D.; Whitesides, G. M. Journal of the American Chemical Society 1988, 110, 6560.
(8) Lin, W. C.; Lee, S. H.; Karakachian, M.; Yu, B. Y.; Chen, Y. Y.; Lin, Y. C.; Kuo, C. H.; Shyue, J. J. Phys Chem Chem Phys 2009, 11, 6199.
(9) Einati, H.; Mottel, A.; Inberg, A.; Shacham-Diamand, Y. Electrochim Acta 2009, 54, 6063.
(10) Pulsipher, A.; Yousaf, M. In Bioactive Surfaces; Börner, H. G., Lutz, J.-F., Eds.; Springer Berlin Heidelberg: 2011; Vol. 240, p 103.
(11) Bierbaum, K.; Kinzler, M.; Woell, C.; Grunze, M.; Haehner, G.; Heid, S.; Effenberger, F. Langmuir : the ACS journal of surfaces and colloids 1995, 11, 512.
(12) Bain, C. D.; Whitesides, G. M. Journal of the American Chemical Society 1988, 110, 6560.
(13) Chaki, N.; Aslam, M.; Sharma, J.; Vijayamohanan, K. J Chem Sci 2001, 113, 659.
(14) Ahn, S.; Seo, E.; Kim, K.; Lee, S. J. Sci Rep 2013, 3, 1997.
(15) Brigger, I.; Dubernet, C.; Couvreur, P. Adv Drug Deliv Rev 2002, 54, 631.
(16) Mrksich, M.; Whitesides, G. M. Annual Review of Biophysics and Biomolecular Structure 1996, 25, 55.
(17) Anderson, W. F. Nature 1998, 392, 25.
(18) Niidome, T.; Huang, L. Gene Ther 2002, 9, 1647.
(19) Li, H. H.; Liu, S. Q.; Dai, Z. H.; Bao, J. C.; Yang, X. D. Sensors-Basel 2009, 9, 8547.
(20) Cheng, Y.; Samia, A. C.; Li, J.; Kenney, M. E.; Resnick, A.; Burda, C. Langmuir : the ACS journal of surfaces and colloids 2010, 26, 2248.
(21) Parveen, S.; Misra, R.; Sahoo, S. K. Nanomedicine 2012, 8, 147.
(22) Khlebtsov, N.; Dykman, L. Chem Soc Rev 2011, 40, 1647.
(23) Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Small 2005, 1, 325.
(24) VJ Mohanraj, Y. C. Trop J Pharm Res 2006, 5(1), 561.
(25) Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. Journal of the American Chemical Society 2003, 125, 4700.
(26) Alkilany, A. M.; Murphy, C. J. J Nanopart Res 2010, 12, 2313.
(27) Cho, E. C.; Zhang, Q.; Xia, Y. Nat Nanotechnol 2011, 6, 385.
(28) Albanese, A.; Tang, P. S.; Chan, W. C. Annu Rev Biomed Eng 2012, 14, 1.
(29) Prabha, S.; Zhou, W. Z.; Panyam, J.; Labhasetwar, V. Int J Pharm 2002, 244, 105.
(30) Jiang, W.; Kim, B. Y.; Rutka, J. T.; Chan, W. C. Nat Nanotechnol 2008, 3, 145.
(31) Dykman, L. A.; Khlebtsov, N. G. Chemical reviews 2014, 114, 1258.
(32) Gratton, S. E.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. Proc Natl Acad Sci U S A 2008, 105, 11613.
(33) Sandhu, K. K.; McIntosh, C. M.; Simard, J. M.; Smith, S. W.; Rotello, V. M. Bioconjug Chem 2002, 13, 3.
(34) Salem, A. K.; Searson, P. C.; Leong, K. W. Nat Mater 2003, 2, 668.
(35) Han, G.; Martin, C. T.; Rotello, V. M. Chem Biol Drug Des 2006, 67, 78.
(36) Stettner, J.; Winkler, A. Langmuir : the ACS journal of surfaces and colloids 2010, 26, 9659.
(37) Cho, E. C.; Au, L.; Zhang, Q.; Xia, Y. Small 2010, 6, 517.
(38) Almeida, J. P.; Chen, A. L.; Foster, A.; Drezek, R. Nanomedicine (Lond) 2011, 6, 815.
(39) Li, P.; Li, D.; Zhang, L.; Li, G.; Wang, E. Biomaterials 2008, 29, 3617.
(40) Kuo, C. W.; Lai, J. J.; Wei, K. H.; Chen, P. Nanotechnology 2008, 19, 025103.
(41) Verma, A.; Stellacci, F. Small 2010, 6, 12.
(42) Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Nano Lett 2006, 6, 662.
(43) Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Proc Natl Acad Sci U S A 2007, 104, 2050.
(44) Chithrani, B. D.; Chan, W. C. Nano Lett 2007, 7, 1542.
(45) Pillai, P. P.; Huda, S.; Kowalczyk, B.; Grzybowski, B. A. Journal of the American Chemical Society 2013, 135, 6392.
(46) Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U.; Kreyling, W. G. European Journal of Pharmaceutics and Biopharmaceutics 2011, 77, 407.
(47) Almeida, J. P.; Lin, A. Y.; Langsner, R. J.; Eckels, P.; Foster, A. E.; Drezek, R. A. Small 2014, 10, 812.
(48) Thiel, V.; Sjovall, P. In Principles and Practice of Analytical Techniques in Geosciences; The Royal Society of Chemistry: 2015, p 122.
(49) Benninghoven, A. Angewandte Chemie International Edition in English 1994, 33, 1023.
(50) Benninghoven, A. physica status solidi (b) 1969, 34, K169.
(51) Belu, A. M.; Graham, D. J.; Castner, D. G. Biomaterials 2003, 24, 3635.
(52) Vickerman, J. C.; Briggs, D. ToF-SIMS: Materials Analysis by Mass Spectrometry; IM Publications, 2013.
(53) Brunelle, A.; Laprévote, O. Anal Bioanal Chem 2009, 393, 31.
(54) Fletcher, J. S.; Lockyer, N. P.; Vickerman, J. C. Surface and Interface Analysis 2006, 38, 1393.
(55) Touboul, D.; Kollmer, F.; Niehuis, E.; Brunelle, A.; Laprévote, O. Journal of the American Society for Mass Spectrometry 2005, 16, 1608.
(56) Xu, J.; Ostrowski, S.; Szakal, C.; Ewing, A. G.; Winograd, N. Applied Surface Science 2004, 231–232, 159.
(57) Barnes, C. A.; Brison, J.; Robinson, M.; Graham, D. J.; Castner, D. G.; Ratner, B. D. Analytical Chemistry 2011, 84, 893.
(58) Brulet, M.; Seyer, A.; Edelman, A.; Brunelle, A.; Fritsch, J.; Ollero, M.; Laprévote, O. Journal of Lipid Research 2010, 51, 3034.
(59) Benabdellah, F.; Seyer, A.; Quinton, L.; Touboul, D.; Brunelle, A.; Laprévote, O. Anal Bioanal Chem 2010, 396, 151.
(60) Lanekoff, I.; Kurczy, M. E.; Hill, R.; Fletcher, J. S.; Vickerman, J. C.; Winograd, N.; Sjövall, P.; Ewing, A. G. Analytical Chemistry 2010, 82, 6652.
(61) Nygren, H.; Malmberg, P.; Kriegeskotte, C.; Arlinghaus, H. F. FEBS Letters 2004, 566, 291.
(62) Sjövall, P.; Johansson, B.; Belazi, D.; Stenvinkel, P.; Lindholm, B.; Lausmaa, J.; Schalling, M. Applied Surface Science 2008, 255, 1177.
(63) Sjövall, P.; Lausmaa, J.; Johansson, B. Analytical Chemistry 2004, 76, 4271.
(64) Touboul, D.; Roy, S.; Germain, D. P.; Chaminade, P.; Brunelle, A.; Laprévote, O. International Journal of Mass Spectrometry 2007, 260, 158.
(65) Muramoto, S.; Brison, J.; Castner, D. G. Analytical Chemistry 2011, 84, 365.
(66) Kurczy, M.; Piehowsky, P.; Willingham, D.; Molyneaux, K.; Heien, M.; Winograd, N.; Ewing, A. Journal of the American Society for Mass Spectrometry 2010, 21, 833.
(67) Appelhans, A. D.; Delmore, J. E. Analytical Chemistry 1989, 61, 1087.
(68) Kötter, F.; Benninghoven, A. Applied Surface Science 1998, 133, 47.
(69) Weibel, D.; Wong, S.; Lockyer, N.; Blenkinsopp, P.; Hill, R.; Vickerman, J. C. Analytical Chemistry 2003, 75, 1754.
(70) Fletcher, J. S.; Conlan, X. A.; Jones, E. A.; Biddulph, G.; Lockyer, N. P.; Vickerman, J. C. Analytical Chemistry 2006, 78, 1827.
(71) P. Sjo¨vall, D. R., S. Ray, L. Yang, and A. G. Shard J. Phys. Chem. B 2010, 114 (2), 769.
(72) Yamada, I.; Matsuo, J.; Toyoda, N.; Kirkpatrick, A. Materials Science and Engineering: R: Reports 2001, 34, 231.
(73) Toyoda, N.; Matsuo, J.; Aoki, T.; Yamada, I.; Fenner, D. B. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2002, 190, 860.
(74) Fujii, M.; Nakagawa, S.; Matsuda, K.; Man, N.; Seki, T.; Aoki, T.; Matsuo, J. Rapid Communications in Mass Spectrometry 2014, 28, 917.
(75) Bich, C.; Havelund, R.; Moellers, R.; Touboul, D.; Kollmer, F.; Niehuis, E.; Gilmore, I. S.; Brunelle, A. Analytical Chemistry 2013, 85, 7745.
(76) Angerer, T. B.; Blenkinsopp, P.; Fletcher, J. S. International Journal of Mass Spectrometry.
(77) Fletcher, J. S.; Rabbani, S.; Barber, A. M.; Lockyer, N. P.; Vickerman, J. C. Surface and Interface Analysis 2013, 45, 273.
(78) Robinson, M.; Castner, D. Biointerphases 2013, 8, 1.
(79) Mittal, R.; Hudson, D. S.; Reiprich, T. H.; Clarke, T. Astron Astrophys 2009, 501, 835.
(80) Aceto, G. M.; Solano, A. R.; Neuman, M. I.; Veschi, S.; Morgano, A.; Malatesta, S.; Chacon, R. D.; Pupareli, C.; Lombardi, M.; Battista, P.; Marchetti, A.; Mariani-Costantini, R.; Podesta, E. J. Breast Cancer Res Treat 2010, 122, 671.
(81) Lin, J. H.; Chang, H. Y.; Kao, W. L.; Lin, K. Y.; Liao, H. Y.; You, Y. W.; Kuo, Y. T.; Kuo, D. Y.; Chu, K. J.; Chu, Y. H.; Shyue, J. J. Langmuir : the ACS journal of surfaces and colloids 2014, 30, 10328.
(82) Chen, L.; McCrate, J. M.; Lee, J. C.; Li, H. Nanotechnology 2011, 22, 105708.
(83) Lin, Y. C.; Yu, B. Y.; Lin, W. C.; Lee, S. H.; Kuo, C. H.; Shyue, J. J. J Colloid Interface Sci 2009, 340, 126.
(84) Hudalla, G. A.; Murphy, W. L. Soft Matter 2011, 7, 9561.
(85) Ng, C. C. A.; Magenau, A.; Ngalim, S. H.; Ciampi, S.; Chockalingham, M.; Harper, J. B.; Gaus, K.; Gooding, J. J. Angew Chem Int Edit 2012, 51, 7706.
(86) Bruce Alberts, A. J., Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Molecular Biology of the Cell; Garland Science; 5 edition, 2008.
(87) Curtis, A. S. G.; Forrester, J. V.; Mcinnes, C.; Lawrie, F. J Cell Biol 1983, 97, 1500.
(88) Wichterle, O.; Lim, D. Nature 1960, 185, 117.
(89) Lim, F.; Sun, A. M. Science 1980, 210, 908.
(90) Scotchford, C. A.; Gilmore, C. P.; Cooper, E.; Leggett, G. J.; Downes, S. J Biomed Mater Res 2002, 59, 84.
(91) Cousins, B. G.; Zekonyte, J.; Doherty, P. J.; Garvey, M. J.; Williams, R. L. International Journal of Nano and Biomaterials 2008, 1, 320.
(92) Palacio, M. L. B.; Bhushan, B. Philos T R Soc A 2012, 370, 2321.
(93) Lehnert, D.; Wehrle-Haller, B.; David, C.; Weiland, U.; Ballestrem, C.; Imhof, B. A.; Bastmeyer, M. J Cell Sci 2004, 117, 41.
(94) Faucheux, N.; Schweiss, R.; Lutzow, K.; Werner, C.; Groth, T. Biomaterials 2004, 25, 2721.
(95) Ulman, A. Chemical reviews 1996, 96, 1533.
(96) Mendes, P. M. Chem Soc Rev 2008, 37, 2512.
(97) Hegner, M.; Wagner, P.; Semenza, G. Surf Sci 1993, 291, 39.
(98) Shaw, C. P.; Middleton, D. A.; Volk, M.; Levy, R. ACS nano 2012, 6, 1416.
(99) Arima, Y.; Iwata, H. Biomaterials 2007, 28, 3074.
(100) Margel, S.; Vogler, E. A.; Firment, L.; Watt, T.; Haynie, S.; Sogah, D. Y. J Biomed Mater Res 1993, 27, 1463.
(101) Müller, R.; Ruhl, S.; Hiller, K. A.; Schmalz, G.; Schweikl, H. Journal of Biomedical Materials Research Part A 2008, 84A, 817.
(102) Altankov, G.; Richau, K.; Groth, T. Materialwiss Werkst 2003, 34, 1120.
(103) Palyvoda, O.; Bordenyuk, A. N.; Yatawara, A. K.; McCullen, E.; Chen, C. C.; Benderskii, A. V.; Auner, G. W. Langmuir : the ACS journal of surfaces and colloids 2008, 24, 4097.
(104) Shen, C. H.; Lin, J. C. Langmuir : the ACS journal of surfaces and colloids 2012, 28, 640.
(105) Lin, Y. C.; Yu, B. Y.; Lin, W. C.; Chen, Y. Y.; Shyue, J. J. Chem Mater 2008, 20, 6606.
(106) Sachl, R.; Mikhalyov, I.; Hof, M.; Johansson, L. B. Phys Chem Chem Phys 2009, 11, 4335.
(107) Kuo, C. H.; Liu, C. P.; Lee, S. H.; Chang, H. Y.; Lin, W. C.; You, Y. W.; Liao, H. Y.; Shyue, J. J. Phys Chem Chem Phys 2011, 13, 15122.
(108) You, Y. W.; Chang, H. Y.; Liao, H. Y.; Kao, W. L.; Yen, G. J.; Chang, C. J.; Tsai, M. H.; Shyue, J. J. Microscopy and Microanalysis 2012, 18, 1037.
(109) Harush-Frenkel, O.; Debotton, N.; Benita, S.; Altschuler, Y. Biochem Biophys Res Commun 2007, 353, 26.
(110) Fleischer, C. C.; Payne, C. K. Accounts of chemical research 2014, 47, 2651.
(111) Yan, Y.; Gause, K. T.; Kamphuis, M. M.; Ang, C. S.; O'Brien-Simpson, N. M.; Lenzo, J. C.; Reynolds, E. C.; Nice, E. C.; Caruso, F. ACS nano 2013, 7, 10960.
(112) Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Adv Drug Deliver Rev 2009, 61, 428.
(113) Kao, W.-L.; Chang, H.-Y.; Yen, G.-J.; Kuo, D.-Y.; You, Y.-W.; Huang, C.-C.; Kuo, Y.-T.; Lin, J.-H.; Shyue, J.-J. Journal of Colloid and Interface Science 2012, 382, 97.
(114) Luzio, J. P.; Rous, B. A.; Bright, N. A.; Pryor, P. R.; Mullock, B. M.; Piper, R. C. J Cell Sci 2000, 113, 1515.
(115) Marchetti, A.; Lelong, E.; Cosson, P. BMC Res Notes 2009, 2, 7.
(116) Boyle, J. Biochemistry and Molecular Biology Education 2005, 33, 74.
(117) Vaezian, B.; Anderton, C. R.; Kraft, M. L. Analytical Chemistry 2010, 82, 10006.
(118) Sostarecz, A. G.; Cannon, D. M.; McQuaw, C. M.; Sun, S.; Ewing, A. G.; Winograd, N. Langmuir : the ACS journal of surfaces and colloids 2004, 20, 4926.
(119) Piehowski, P. D.; Carado, A. J.; Kurczy, M. E.; Ostrowski, S. G.; Heien, M. L.; Winograd, N.; Ewing, A. G. Analytical Chemistry 2008, 80, 8662.
(120) Passarelli, M. K.; Winograd, N. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2011, 1811, 976.
(121) Sjövall, P.; Johansson, B.; Lausmaa, J. Applied Surface Science 2006, 252, 6966.
(122) Masaki, N.; Ishizaki, I.; Hayasaka, T.; Fisher, G. L.; Sanada, N.; Yokota, H.; Setou, M. Scientific Reports 2015, 5, 10000.
(123) Brison, J.; Robinson, M. A.; Benoit, D. S. W.; Muramoto, S.; Stayton, P. S.; Castner, D. G. Analytical Chemistry 2013, 85, 10869.
(124) Kirby, B. J.; Wheeler, A. R.; Zare, R. N.; Fruetel, J. A.; Shepodd, T. J. Lab Chip 2003, 3, 5.
(125) Ananthakrishnan, R.; Ehrlicher, A. Int J Biol Sci 2007, 3, 303.
(126) Mijares, G. I.; Reyes, D. R.; Geist, J.; Gaitan, M.; Polk, B. J.; DeVoe, D. L. J Res Natl Inst Stan 2010, 115, 61.
(127) Shyue, J. J.; De Guire, M. R.; Nakanishi, T.; Masuda, Y.; Koumoto, K.; Sukenik, C. N. Langmuir : the ACS journal of surfaces and colloids 2004, 20, 8693.
(128) Justino, D. D.; Lage, A. L. A.; Souto, D. E. P.; da Silva, J. V.; Torres Pio dos Santos, W.; de Cássia Silva Luz, R.; Damos, F. S. Journal of electroanalytical chemistry 2013, 703, 158.
(129) Cheng, S. S.; Scherson, D. A.; Sukenik, C. N. Langmuir : the ACS journal of surfaces and colloids 1995, 11, 1190.
(130) Gang, W.; Jiahui, W.; Xiaofeng, C.; Yingjun, W. Journal of biomedical materials research. Part A 2013.
(131) Abercrombie, M. Nature 1979, 281, 259.
(132) Jainchil.Jl; Aaronson, S. A.; Todaro, G. J. J Virol 1969, 4, 549.
(133) Shiu, R. P. C.; Paterson, J. A. Cancer Res 1984, 44, 1178.
(134) Chen, C. S.; Alonso, J. L.; Ostuni, E.; Whitesides, G. M.; Ingber, D. E. Biochem Bioph Res Co 2003, 307, 355.
(135) Costa, K. D.; Hucker, W. J.; Yin, F. C. Cell Motil Cytoskeleton 2002, 52, 266.
(136) Mermelstein, C. S.; Rebello, M. I.; Amaral, L. M.; Costa, M. L. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 2003, 36, 1111.
(137) Chang, H. Y.; Huang, C. C.; Lin, K. Y.; Kao, W. L.; Liao, H. Y.; You, Y. W.; Lin, J. H.; Kuo, Y. T.; Kuo, D. Y.; Shyue, J. J. J Phys Chem C 2014, 118, 14464.
(138) Harper, P. A.; Juliano, R. L. J Cell Biol 1981, 91, 647.
(139) Munoz, I.; Berges, M.; Bonsergent, C.; Cormier-Aline, F.; Quéré, P.; Sibille, P. Molecular Immunology 2009, 47, 551.
(140) Liste-Calleja, L.; Lecina, M.; Cairo, J. J. J Biosci Bioeng 2014, 117, 471.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *