帳號:guest(3.144.235.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪靚軒
作者(外文):Hung,Ching Hsuan
論文名稱(中文):光激發效應對二氧化鈦塗覆鋼材之防蝕效益研究
論文名稱(外文):The Influence of Photocatalysis on Corrosion Mitigation for TiO2 Coated Alloys
指導教授(中文):梁正宏
葉宗洸
指導教授(外文):Liang, Jenq Horng
Yeh, Tsung Kuang
口試委員(中文):王美雅
馮克林
黃俊源
口試委員(外文):Wang, Mei Ya
Fong, Clinton
Huang, June Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011703
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:105
中文關鍵詞:二氧化鈦防蝕光電化學性質電化學分析不鏽鋼碳鋼
外文關鍵詞:TiO2 coatingphotoelectrochemicalelectrochemical analysisstainless steelcarbon steel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:415
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用二氧化鈦溶膠-凝膠(Sol-Gel)被覆於鋼材表面,在紫外光照射下,具N-型半導體特性之二氧化鈦將扮演非犧牲陽極的角色,對鋼材實行陰極保護達到防蝕效果。首先以ITO玻璃(Indium-doping Tin Oxide 濺鍍氧化銦錫之玻璃),測試選用之二氧化鈦膠體於紫外光照射下是否能展現光電化學特性,再將二氧化鈦膠體被覆於不鏽鋼或碳鋼基材,進行動態極化掃描試驗。相較於不鏽鋼,實驗結果顯示當二氧化鈦直接被覆於碳鋼時,其光電化學效果並不顯著。根據X光薄膜繞射儀與歐傑電子能譜儀分析結果,發現基材裡的金屬元素會擴散至被覆層;因此推測,由於基材之金屬元素擴散,破壞二氧化鈦結構,使得該觸媒失去光電化學特性。透過高溫爐預長特定的氧化膜結構再於基材表層進行被覆,能有效改善基材金屬元素擴散,提升二氧化鈦之光電化學特性,當紫外光照射時,受被覆的金屬基材會有明顯的電化學腐蝕電位及腐蝕電流密度下降。根據實驗結果表示,本研究所採用之二氧化鈦溶膠-凝膠塗覆法能大幅提升金屬鋼材之防蝕性能,在嚴酷的腐蝕環境下可以有效減緩其腐蝕速率。
Stainless steel (SS) and carbon steel (CS) are susceptible to stress corrosion cracking (SCC) in certain environments, which included the sea salt particles and chlorides. In addition, the TiO2 coating can act as a nonsacrificial anode and cathodically protect steel substrates under ultraviolet (UV) illumination. In this study the ITO glass was first used as testing substrate for the availability of photocatalytic behavior of Lab-made TiO2 solutions. Then the photocatalytic behavior of steels with TiO2 coating by using a sol-gel method was investigated to mitigate atmospheric SCC. Electrochemical analysis results revealed that the electrochemical corrosion potential (ECP) of the TiO2 coated on polished 304 SS markedly decreased compared with the TiO2 coated on polished CS in the presence of UV radiation. In addition, a specific oxide structure between the TiO2 and CS interface would enhance the ECP reduction under UV radiation because of the inhibition of other metal ions diffused into the TiO2 coating. In summary, the results indicated that TiO2 treatment in combination with UV radiation can effectively reduce the corrosion rate of 304SS and CS in atmospheric environments.
摘要 i
Abstract ii
致謝 iii
表目錄 iv
圖目錄 v
目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 基礎理論 4
2.1 混合電位理論 4
2.1.1 混合電位模式(Mixed Potential Model, MPM) 4
2.1.2 影響ECP大小的重要參數 6
2.2 伊凡斯圖(Evan’s Diagram) 8
2.2.1 伊凡斯圖 8
2.2.2 塔弗外插法(Tafel Extrapolation) 9
第三章 文獻回顧 11
3.1 鋼材於高溫環境之氧化情形與分析 11
3.1.1 不鏽鋼之高溫氧化 11
3.1.2 碳鋼之高溫氧化 13
3.1.3 氧化層之雷射拉曼散射光譜分析 16
3.2 二氧化鈦光觸媒 18
3.2.1 二氧化鈦之特性 18
3.2.2 溶膠-凝膠法(Sol-Gel)製備二氧化鈦 19
3.3 二氧化鈦光觸媒防蝕 23
3.3.1 氧化膜結構對光觸媒效果之影響 23
3.3.2 氧化鈦光觸媒之電化學行為 27
3.3.3 氧化鈦光觸媒之電位遲滯效應 36
第四章 實驗方法 38
4.1實驗方法與流程 38
4.2 試片準備 40
4.2.1 試片研磨 40
4.2.2 預長氧化膜 40
4.2.3 光觸媒二氧化鈦被覆 41
4.2.4 濺鍍法(Sputter)製備二氧化鈦薄膜 42
4.3 試片分析 42
4.3.1 輝光放電分析儀 42
4.3.2 場發射掃描式電子顯微鏡 43
4.3.4 雷射拉曼散射光譜(LRS) 43
4.3.5 X-ray薄膜繞射分析 44
4.3.6 歐傑電子能譜儀 (Auger Electron Spectroscopy) 45
4.4 電化學試驗分析 45
4.4.1 動態極化掃描與電位監測 45
4.4.2常溫電化學交流阻抗分析 46
第五章 結果與討論 48
5.1 預長氧化膜結果分析 48
5.1.1 雷射拉曼散射光譜(LRS) 48
5.2 二氧化鈦結構分析 49
5.2.1 X-ray薄膜繞射分析 50
5.3 ITO系統 52
5.3.1 二氧化鈦/ITO系統光觸媒效果 52
5.4 304不鏽鋼系統 53
5.4.1 未被覆不鏽鋼系統之光電化學反應 53
5.4.2 Anatase膠體被覆於304不鏽鋼系統 57
5.4.3 Amorphous膠體被覆於304不鏽鋼系統 63
5.4.4 Sputter 30nm Ti於304不鏽鋼系統 65
5.5 碳鋼系統 70
5.5.1 未被覆碳鋼系統之光電化學反應 70
5.5.2 Anatase膠體被覆於碳鋼系統 73
5.5.3 Amorphous膠體被覆於碳鋼系統 77
5.5.4 Sputter 30nm Ti 於碳鋼系統 85
5.6 重複照光之光觸媒效果與電位緩慢回復 89
第六章 結論 96
參考文獻 98
[1] 陳哲生, "設備的防蝕塗裝," 中工高雄會刊, vol. 17, pp. 45-52, 2010.
[2] R. Fujisawa and S. Tsujikawa, "Photo-protection of 304 stainless steel with TiO2 coating," in Materials Science Forum, 1995, p. 1075.
[3] T. Yoko, K. Kamiya, and S. Sakka, "Photoelectrochemical properties of TiO2 films prepared by the sol-gel method," Yogyo Kyokan Shi, vol. 95, 1987.
[4] J. M. Pan and T. E. Madey, "Ultrathin Fe films on TiO2 (110): Growth and reactivity," Journal of Vacuum Science & Technology A, vol. 11, pp. 1667-1674, 1993.
[5] 袁江南 and 辻川茂男, "Photo-Effects of Sol-Gel Derived TiO2 Coating on Carbon Steel in Alkaline Solution," 材料と環境: zairyo-to-kankyo, vol. 44, pp. 534-542, 1995.
[6] D. D. Macdonald, "Viability of hydrogen water chemistry for protecting in-vessel components of boiling water reactors," Corrosion, vol. 48, pp. 194-205, 1992.
[7] Y. Tan, Heterogeneous Electrode Processes and Localized Corrosion. John Wiley & Sons, Inc., Hoboken, New Jersey.
[8] Z. Yao, W. Xiong, G. Zhang, X. Chen, and B. Huang, "Effects of Si addition on properties of Fe–Cr–W–Ti–Y2O3 alloy fabricated by mechanical alloying," Materials & Design, vol. 56, pp. 953-958, 2014.
[9] S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, "The surface characterization and corrosion resistance of 11% Cr ferritic/martensitic and 9–15% Cr ODS steels for nuclear fuel reprocessing application," Journal of Solid State Electrochemistry, vol. 18, pp. 411-425, 2014.
[10] S. Taniguchi, K. Yamamoto, D. Megumi, and T. Shibata, "Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures," Materials Science and Engineering: A, vol. 308, pp. 250-257, 2001.
[11] H. Asteman, J.-E. Svensson, and L.-G. Johansson, "Effect of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless Steels at 700 and 900°C Influence of Cr/Fe Ratio in Alloy and Ce Additions," Journal of the Electrochemical Society, vol. 151, pp. B141-B150, 2004.
[12] R. Peraldi and B. Pint, "Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor," Oxidation of Metals, vol. 61, pp. 463-483, 2004.
[13] A. Yamauchi, K. Kurokawa, and H. Takahashi, "Evaporation of Cr2O3 in atmospheres containing H2O," Oxidation of Metals, vol. 59, pp. 517-527, 2003.
[14] X. Peng, J. Yan, Y. Zhou, and F. Wang, "Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air," Acta Materialia, vol. 53, pp. 5079-5088, 2005.
[15] C. E. R. d. Carvalho, G. M. d. Costa, A. B. Cota, and E. H. Rossi, "High temperature oxidation behavior of AISI 304 and AISI 430 stainless steels," Materials Research, vol. 9, pp. 393-397, 2006.
[16] D. Caplan, G. Sproule, R. Hussey, and M. Graham, "Oxidation of Fe-C alloys at 500° C," Oxidation of Metals, vol. 12, pp. 67-82, 1978.
[17] J. Rujisomnapa, P. Seechompoo, P. Suwannachoat, S. Suebca, and P. Wongpanya, "High Temperature Oxidation Behaviour of low Carbon Steel and Austenitic Stainless Steel," J. Met. Mater. Miner, vol. 20, pp. 31-6, 2010.
[18] M. Marciuš, M. Ristić, M. Ivanda, and S. Musić, "Formation of iron oxides by surface oxidation of iron plate," Croatica Chemica Acta, vol. 85, pp. 117-124, 2012.
[19] J. Nakano, T. Sato, C. Kato, M. Yamamoto, T. Tsukada, and Y. Kaji, "Effects of temperature on stress corrosion cracking behavior of stainless steel and outer oxide distribution in cracks due to exposure to high-temperature water containing hydrogen peroxide," Journal of Nuclear Materials, vol. 444, pp. 454-461, 2014.
[20] Y. Murayama, T. Satoh, S. Uchida, Y. Satoh, S. Nagata, T. Satoh, et al., "Effects of hydrogen peroxide on intergranular stress corrosion cracking of stainless steel in high temperature water,(V) Characterization of oxide film on stainless steel by multilateral surface analyses," Journal of Nuclear Science and Technology, vol. 39, pp. 1199-1206, 2002.
[21] Y. Wada, A. Watanabe, M. Tachibana, K. Ishida, N. Uetake, S. Uchida, et al., "Effects of hydrogen peroxide on intergranular stress corrosion cracking of stainless steel in high temperature water,(IV) Effects of oxide film on electrochemical corrosion potential," Journal of Nuclear Science and Technology, vol. 38, pp. 183-192, 2001.
[22] A. Fujishima, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, pp. 37-38, 1972.
[23] J. Zhang, P. Zhou, J. Liu, and J. Yu, "New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2," Phys. Chem. Chem. Phys., vol. 16, pp. 20382-20386, 2014.
[24] J. Wang, B. Guo, X. Zhang, Z. Zhang, J. Han, and J. Wu, "Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase," Ultrasonics sonochemistry, vol. 12, pp. 331-337, 2005.
[25] C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, "Preparation and characterization of quantum-size titanium dioxide," The Journal of Physical Chemistry, vol. 92, pp. 5196-5201, 1988.
[26] M. Kang, S.-Y. Lee, C.-H. Chung, S. M. Cho, G. Y. Han, B.-W. Kim, et al., "Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl3 decomposition," Journal of Photochemistry and Photobiology A: Chemistry, vol. 144, pp. 185-191, 2001.
[27] S.-H. Lee, M. Kang, S. M. Cho, G. Y. Han, B.-W. Kim, K. J. Yoon, et al., "Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance," Journal of Photochemistry and Photobiology A: Chemistry, vol. 146, pp. 121-128, 12/13/ 2001.
[28] C. Wang, Z.-X. Deng, G. Zhang, S. Fan, and Y. Li, "Synthesis of nanocrystalline TiO2 in alcohols," Powder Technology, vol. 125, pp. 39-44, 5/13/ 2002.
[29] C.-S. Kim, B. K. Moon, J.-H. Park, S. Tae Chung, and S.-M. Son, "Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route," Journal of Crystal Growth, vol. 254, pp. 405-410, 2003.
[30] W. Payakgul, O. Mekasuwandumrong, V. Pavarajarn, and P. Praserthdam, "Effects of reaction medium on the synthesis of TiO2 nanocrystals by thermal decomposition of titanium (IV) n-butoxide," Ceramics International, vol. 31, pp. 391-397, 2005.
[31] J. Huang, T. Shinohara, and S. Tsujikawa, "Effects of Interfacial Iron Oxides on Corrosion Protection of Carbon Steel by TiO2 Coating under Illumination," 材料と環境: zairyo-to-kankyo, vol. 46, pp. 651-661, 1997.
[32] H. Kim, N. Hara, and K. Sugimoto, "Photoelectrochemical and Corrosion Properties of Fe2O3‐TiO2 Artificial Passivation films," Journal of the Electrochemical Society, vol. 146, pp. 955-960, 1999.
[33] D. Beydoun, R. Amal, G. K.-C. Low, and S. McEvoy, "Novel photocatalyst: titania-coated magnetite. Activity and photodissolution," The Journal of Physical Chemistry B, vol. 104, pp. 4387-4396, 2000.
[34] M. Akashi, H. Iso-o, N. Kubota, T. Fukuda, M. Ayabe, and K. Hirano, "Photoelectrochemical protection of stainless alloys from the stress-corrosion cracking in BWR primary coolant environment," in Seventh international symposium on environmental degradation of materials in nuclear power systems--Water reactors: Proceedings and symposium discussions. Volume 1, 1995.
[35] Y. Ohko, S. Saitoh, T. Tatsuma, and A. Fujishima, "Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel," Journal of the Electrochemical Society, vol. 148, pp. B24-B28, 2001.
[36] L. Ćurković, H. O. Ćurković, S. Salopek, M. M. Renjo, and S. Šegota, "Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films," Corrosion Science, vol. 77, pp. 176-184, 2013.
[37] S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, and J. Fu, "Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316L stainless steel," Nanoscale research letters, vol. 7, pp. 1-9, 2012.
[38] M. G. Mahmoud, R. Wang, M. Kato, and K. Nakasa, "Influence of ultraviolet light irradiation on corrosion behavior of weathering steel with and without TiO2 coating in 3 mass% NaCl solution," Scripta materialia, vol. 53, pp. 1303-1308, 2005.
[39] J. Yuan, R. Fujisawa, and S. Tsujikawa, "Photopotentials of copper coated with TiO2 by sol-gel method," 材料と環境, vol. 43, pp. p433-440, 1994.
[40] J. Yuan and S. Tsujikawa, "Characterization of Sol‐Gel‐Derived TiO2 Coatings and Their Photoeffects on Copper Substrates," Journal of the Electrochemical Society, vol. 142, pp. 3444-3450, 1995.
[41] J. Huang, T. Konishi, T. Shinohara, and S. Tsujikawa, "Sol-gel derived Ti-Fe oxide coating for photoelectrochemical cathodic protection of carbon steel," 材料と環境: zairyo-to-kankyo, vol. 47, pp. 193-199, 1998.
[42] T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, and A. Fujishima, "Energy storage of TiO2-WO3 photocatalysis systems in the gas phase," Langmuir, vol. 18, pp. 7777-7779, 2002.
[43] T. Tatsuma, S. Saitoh, Y. Ohko, and A. Fujishima, "TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability," Chemistry of materials, vol. 13, pp. 2838-2842, 2001.
[44] T. Miyazawa, S. Uchida, T. Satoh, Y. Morishima, T. Hirose, Y. Satoh, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,(IV) Determination of Oxide Film Properties with Multilateral Surface Analyses," Journal of nuclear science and technology, vol. 42, pp. 233-241, 2005.
[45] H. Wang, T. Wang, and P. Xu, "Effects of substrate temperature on the microstructure and photocatalytic reactivity of TiO2 films," Journal of Materials Science: Materials in Electronics, vol. 9, pp. 327-330, 1998.
[46] D. Reyes-Coronado, G. Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, and G. Oskam, "Phase-pure TiO2 nanoparticles: anatase, brookite and rutile," Nanotechnology, vol. 19, p. 145605, 2008.
[47] S. R. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, et al., "Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy," Chem. Commun., vol. 47, pp. 716-718, 2010.
[48] L. Vella and D. Emerson, "Electrical Properties of Magnetite-and Hematite-Rich Rocks and Ores," ASEG Extended Abstracts, vol. 2012, pp.1-4,2012.
[49] C.-C. Ting, S.-Y. Chen, and D.-M. Liu, "Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," Journal of Applied Physics, vol. 88, pp. 4628-4633, 2000.
[50] J. C. Yu, W. Ho, J. Lin, H. Yip, and P. K. Wong, "Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate," Environmental science & technology, vol. 37, pp. 2296-2301, 2003.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *