|
[1] 陳哲生, "設備的防蝕塗裝," 中工高雄會刊, vol. 17, pp. 45-52, 2010. [2] R. Fujisawa and S. Tsujikawa, "Photo-protection of 304 stainless steel with TiO2 coating," in Materials Science Forum, 1995, p. 1075. [3] T. Yoko, K. Kamiya, and S. Sakka, "Photoelectrochemical properties of TiO2 films prepared by the sol-gel method," Yogyo Kyokan Shi, vol. 95, 1987. [4] J. M. Pan and T. E. Madey, "Ultrathin Fe films on TiO2 (110): Growth and reactivity," Journal of Vacuum Science & Technology A, vol. 11, pp. 1667-1674, 1993. [5] 袁江南 and 辻川茂男, "Photo-Effects of Sol-Gel Derived TiO2 Coating on Carbon Steel in Alkaline Solution," 材料と環境: zairyo-to-kankyo, vol. 44, pp. 534-542, 1995. [6] D. D. Macdonald, "Viability of hydrogen water chemistry for protecting in-vessel components of boiling water reactors," Corrosion, vol. 48, pp. 194-205, 1992. [7] Y. Tan, Heterogeneous Electrode Processes and Localized Corrosion. John Wiley & Sons, Inc., Hoboken, New Jersey. [8] Z. Yao, W. Xiong, G. Zhang, X. Chen, and B. Huang, "Effects of Si addition on properties of Fe–Cr–W–Ti–Y2O3 alloy fabricated by mechanical alloying," Materials & Design, vol. 56, pp. 953-958, 2014. [9] S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, "The surface characterization and corrosion resistance of 11% Cr ferritic/martensitic and 9–15% Cr ODS steels for nuclear fuel reprocessing application," Journal of Solid State Electrochemistry, vol. 18, pp. 411-425, 2014. [10] S. Taniguchi, K. Yamamoto, D. Megumi, and T. Shibata, "Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures," Materials Science and Engineering: A, vol. 308, pp. 250-257, 2001. [11] H. Asteman, J.-E. Svensson, and L.-G. Johansson, "Effect of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless Steels at 700 and 900°C Influence of Cr/Fe Ratio in Alloy and Ce Additions," Journal of the Electrochemical Society, vol. 151, pp. B141-B150, 2004. [12] R. Peraldi and B. Pint, "Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor," Oxidation of Metals, vol. 61, pp. 463-483, 2004. [13] A. Yamauchi, K. Kurokawa, and H. Takahashi, "Evaporation of Cr2O3 in atmospheres containing H2O," Oxidation of Metals, vol. 59, pp. 517-527, 2003. [14] X. Peng, J. Yan, Y. Zhou, and F. Wang, "Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air," Acta Materialia, vol. 53, pp. 5079-5088, 2005. [15] C. E. R. d. Carvalho, G. M. d. Costa, A. B. Cota, and E. H. Rossi, "High temperature oxidation behavior of AISI 304 and AISI 430 stainless steels," Materials Research, vol. 9, pp. 393-397, 2006. [16] D. Caplan, G. Sproule, R. Hussey, and M. Graham, "Oxidation of Fe-C alloys at 500° C," Oxidation of Metals, vol. 12, pp. 67-82, 1978. [17] J. Rujisomnapa, P. Seechompoo, P. Suwannachoat, S. Suebca, and P. Wongpanya, "High Temperature Oxidation Behaviour of low Carbon Steel and Austenitic Stainless Steel," J. Met. Mater. Miner, vol. 20, pp. 31-6, 2010. [18] M. Marciuš, M. Ristić, M. Ivanda, and S. Musić, "Formation of iron oxides by surface oxidation of iron plate," Croatica Chemica Acta, vol. 85, pp. 117-124, 2012. [19] J. Nakano, T. Sato, C. Kato, M. Yamamoto, T. Tsukada, and Y. Kaji, "Effects of temperature on stress corrosion cracking behavior of stainless steel and outer oxide distribution in cracks due to exposure to high-temperature water containing hydrogen peroxide," Journal of Nuclear Materials, vol. 444, pp. 454-461, 2014. [20] Y. Murayama, T. Satoh, S. Uchida, Y. Satoh, S. Nagata, T. Satoh, et al., "Effects of hydrogen peroxide on intergranular stress corrosion cracking of stainless steel in high temperature water,(V) Characterization of oxide film on stainless steel by multilateral surface analyses," Journal of Nuclear Science and Technology, vol. 39, pp. 1199-1206, 2002. [21] Y. Wada, A. Watanabe, M. Tachibana, K. Ishida, N. Uetake, S. Uchida, et al., "Effects of hydrogen peroxide on intergranular stress corrosion cracking of stainless steel in high temperature water,(IV) Effects of oxide film on electrochemical corrosion potential," Journal of Nuclear Science and Technology, vol. 38, pp. 183-192, 2001. [22] A. Fujishima, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, pp. 37-38, 1972. [23] J. Zhang, P. Zhou, J. Liu, and J. Yu, "New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2," Phys. Chem. Chem. Phys., vol. 16, pp. 20382-20386, 2014. [24] J. Wang, B. Guo, X. Zhang, Z. Zhang, J. Han, and J. Wu, "Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase," Ultrasonics sonochemistry, vol. 12, pp. 331-337, 2005. [25] C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, "Preparation and characterization of quantum-size titanium dioxide," The Journal of Physical Chemistry, vol. 92, pp. 5196-5201, 1988. [26] M. Kang, S.-Y. Lee, C.-H. Chung, S. M. Cho, G. Y. Han, B.-W. Kim, et al., "Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl3 decomposition," Journal of Photochemistry and Photobiology A: Chemistry, vol. 144, pp. 185-191, 2001. [27] S.-H. Lee, M. Kang, S. M. Cho, G. Y. Han, B.-W. Kim, K. J. Yoon, et al., "Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance," Journal of Photochemistry and Photobiology A: Chemistry, vol. 146, pp. 121-128, 12/13/ 2001. [28] C. Wang, Z.-X. Deng, G. Zhang, S. Fan, and Y. Li, "Synthesis of nanocrystalline TiO2 in alcohols," Powder Technology, vol. 125, pp. 39-44, 5/13/ 2002. [29] C.-S. Kim, B. K. Moon, J.-H. Park, S. Tae Chung, and S.-M. Son, "Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route," Journal of Crystal Growth, vol. 254, pp. 405-410, 2003. [30] W. Payakgul, O. Mekasuwandumrong, V. Pavarajarn, and P. Praserthdam, "Effects of reaction medium on the synthesis of TiO2 nanocrystals by thermal decomposition of titanium (IV) n-butoxide," Ceramics International, vol. 31, pp. 391-397, 2005. [31] J. Huang, T. Shinohara, and S. Tsujikawa, "Effects of Interfacial Iron Oxides on Corrosion Protection of Carbon Steel by TiO2 Coating under Illumination," 材料と環境: zairyo-to-kankyo, vol. 46, pp. 651-661, 1997. [32] H. Kim, N. Hara, and K. Sugimoto, "Photoelectrochemical and Corrosion Properties of Fe2O3‐TiO2 Artificial Passivation films," Journal of the Electrochemical Society, vol. 146, pp. 955-960, 1999. [33] D. Beydoun, R. Amal, G. K.-C. Low, and S. McEvoy, "Novel photocatalyst: titania-coated magnetite. Activity and photodissolution," The Journal of Physical Chemistry B, vol. 104, pp. 4387-4396, 2000. [34] M. Akashi, H. Iso-o, N. Kubota, T. Fukuda, M. Ayabe, and K. Hirano, "Photoelectrochemical protection of stainless alloys from the stress-corrosion cracking in BWR primary coolant environment," in Seventh international symposium on environmental degradation of materials in nuclear power systems--Water reactors: Proceedings and symposium discussions. Volume 1, 1995. [35] Y. Ohko, S. Saitoh, T. Tatsuma, and A. Fujishima, "Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel," Journal of the Electrochemical Society, vol. 148, pp. B24-B28, 2001. [36] L. Ćurković, H. O. Ćurković, S. Salopek, M. M. Renjo, and S. Šegota, "Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films," Corrosion Science, vol. 77, pp. 176-184, 2013. [37] S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, and J. Fu, "Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316L stainless steel," Nanoscale research letters, vol. 7, pp. 1-9, 2012. [38] M. G. Mahmoud, R. Wang, M. Kato, and K. Nakasa, "Influence of ultraviolet light irradiation on corrosion behavior of weathering steel with and without TiO2 coating in 3 mass% NaCl solution," Scripta materialia, vol. 53, pp. 1303-1308, 2005. [39] J. Yuan, R. Fujisawa, and S. Tsujikawa, "Photopotentials of copper coated with TiO2 by sol-gel method," 材料と環境, vol. 43, pp. p433-440, 1994. [40] J. Yuan and S. Tsujikawa, "Characterization of Sol‐Gel‐Derived TiO2 Coatings and Their Photoeffects on Copper Substrates," Journal of the Electrochemical Society, vol. 142, pp. 3444-3450, 1995. [41] J. Huang, T. Konishi, T. Shinohara, and S. Tsujikawa, "Sol-gel derived Ti-Fe oxide coating for photoelectrochemical cathodic protection of carbon steel," 材料と環境: zairyo-to-kankyo, vol. 47, pp. 193-199, 1998. [42] T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, and A. Fujishima, "Energy storage of TiO2-WO3 photocatalysis systems in the gas phase," Langmuir, vol. 18, pp. 7777-7779, 2002. [43] T. Tatsuma, S. Saitoh, Y. Ohko, and A. Fujishima, "TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability," Chemistry of materials, vol. 13, pp. 2838-2842, 2001. [44] T. Miyazawa, S. Uchida, T. Satoh, Y. Morishima, T. Hirose, Y. Satoh, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,(IV) Determination of Oxide Film Properties with Multilateral Surface Analyses," Journal of nuclear science and technology, vol. 42, pp. 233-241, 2005. [45] H. Wang, T. Wang, and P. Xu, "Effects of substrate temperature on the microstructure and photocatalytic reactivity of TiO2 films," Journal of Materials Science: Materials in Electronics, vol. 9, pp. 327-330, 1998. [46] D. Reyes-Coronado, G. Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, and G. Oskam, "Phase-pure TiO2 nanoparticles: anatase, brookite and rutile," Nanotechnology, vol. 19, p. 145605, 2008. [47] S. R. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, et al., "Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy," Chem. Commun., vol. 47, pp. 716-718, 2010. [48] L. Vella and D. Emerson, "Electrical Properties of Magnetite-and Hematite-Rich Rocks and Ores," ASEG Extended Abstracts, vol. 2012, pp.1-4,2012. [49] C.-C. Ting, S.-Y. Chen, and D.-M. Liu, "Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," Journal of Applied Physics, vol. 88, pp. 4628-4633, 2000. [50] J. C. Yu, W. Ho, J. Lin, H. Yip, and P. K. Wong, "Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate," Environmental science & technology, vol. 37, pp. 2296-2301, 2003.
|