帳號:guest(3.14.128.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許克強
作者(外文):Hsu, Ko-Chiang
論文名稱(中文):噴塗熱裂解法製備銦鎵鋅氧化物薄膜之研究
論文名稱(外文):The Growth of Indium-Gallium-Zinc Oxide Thin Film by Spray Pyrolysis Process
指導教授(中文):陳福榮
指導教授(外文):Chen, Fu-Rong
口試委員(中文):陳福榮
林澤勝
孫文檠
口試委員(外文):Fu-Rong Chen
Tzer-Shen Lin
Wen-Ching Sun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011702
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:78
中文關鍵詞:噴塗熱裂解法非晶IGZO薄膜前驅物
外文關鍵詞:Spray pyrolysis processAmorphous IGZO thin filmsPrecursors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
摘要
本研究以噴塗熱裂解法(Spray Pyrolysis Method)來製備非晶氧化銦鎵鋅(In-Ga-Zn-O, IGZO)氧化物薄膜,此鍍膜技術設備簡單,可在非真空環境下沉積薄膜。不過非真空環境之下薄膜成分控制穩定相當困難,特別是在製備多元金屬氧化物混合薄膜。本研究就薄膜成分穩定做探討,主要分兩部分。首先藉由鍍膜之前前驅物金屬鹽類的選擇、前驅物溶液pH值做研究,探討IGZO噴塗熱裂解法中前驅物裂解成膜的機制。另一部分透過對IGZO薄膜做特性分析,以XRD繞射圖驗證其為非晶態,XPS確認化學鍵結與元素成分,進一步驗證以噴霧熱裂解法製備IGZO薄膜符合要求。最後透過各元素各自成膜能力不同做探討,從活化能和各自元素鍍率的不同切入,並將結果推想到IGZO混合薄膜上,解釋混合薄膜中各元素含量不均原因。
本研究從前驅物的特性,前驅物溶液中解離反應,製程時載氣、基板溫度對鍍率的改善,前驅物濃度對成膜後元素含量的影響等實驗時會碰到的參數作探討。期望做為未來欲以噴塗熱裂解法鍍多元混合薄膜時選擇適當前驅物和設計鍍膜參數的參考。
摘要 i
Abstract ii
誌謝 iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 透明導電薄膜 (Transparent Conductive Thin Film) 2
1.2.1 金屬薄膜 2
1.2.2 金屬氧化物薄膜 2
1.3 研究動機 4
第二章 文獻回顧 6
2.1 薄膜電晶體液晶顯示器 6
2.1.1 TFT-LCD材料選擇 6
2.1.2 非晶氧化物載子傳導機制 8
2.1.3 IGZO材料介紹 9
2.2 薄膜製備方式 12
2.2.1 磁控濺鍍法 (Magnetron Sputtering) 13
2.2.2 脈衝雷射沉積 (Pulsed Laser Deposition) 14
2.2.3 電漿輔助化學氣相沉積 (Plasma Enhanced Chemical Vapor Deposition) 14
2.2.4 溶膠凝膠法 (Sol Gel) 14
2.2.5 噴塗熱裂解法 (Spray Pyrolysis) 15
2.2.5.1 噴塗熱裂解法模型 15
2.2.5.2 超音波霧化原理 18
2.2.5.3 逆壓電效應 19
2.3 前驅物材料選擇 19
2.3.1 螯合作用 (Chelation) 22
第三章 實驗流程與分析儀器 23
3.1 藥品與基板 23
3.1.1 實驗藥品 23
3.1.2 製程基板 24
3.2實驗流程 25
3.3實驗分析儀器 30
3.3.1 場發射掃描式電子顯微鏡 (FEG-SEM) 30
3.3.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 32
3.3.3 能量散射光譜儀 (Energy Dispersive Spectroscopy, EDS) 33
3.3.4 薄膜厚度分析儀 (N&K Analyzer) 33
3.3.5 X光光電子能譜儀 (X-ray Photoelectron Spectrometer, XPS) 33
3.3.6 X光繞射分析儀 (X-ray Diffraction, XRD) 35
3.3.7 霍爾量測儀 (Hall Measurement) 36
3.3.8 熱重量分析儀 ( Thermogravimetric Analyzer, TGA) 38
第四章 實驗結果與討論 39
4.1 前驅物熱裂解溫度測定 39
4.2 前驅物漿料設計 42
4.2.1助溶劑、漿料pH值對成膜影響 42
4.2.2前驅物選擇 45
4.2.3 前驅物漿料設計結論 46
4.3 IGZO薄膜特性探討 47
4.3.1 IGZO薄膜結晶性分析 47
4.3.2 IGZO薄膜化學鍵結分析 49
4.3.3 IGZO薄膜表面形貌與微結構分析 52
4.3.4 IGZO薄膜成分分析 55
4.4 單元氧化物成膜能力探討 59
4.5 不同載氣、不同基板溫度對鍍膜速率影響 62
4.6 不同前驅物濃度對薄膜成分含量影響 65
第五章 結論 69
參考文獻 71
[1] 群創光電 http://www.innolux.com/Pages/TW/Technology/TFT_LCD_TW.html
[2] G. H. Heilmeier, L. A. Zanoni, L. A. Barton, “Dynamic Scattering in Nematic Liquid Crystals.” Appl. Phys. Lett. 13, 46 (1968)
[3] S.Masuda, et al., J. Appl. Phys. 93 (2003) 1624
[4] Y.H.Wang, S.C.Her, C.N.Hsiao, H.P.Chen, “Optical and Mechanical Properties of a Metallic Layer.” Journal of Science and Engineering Technology, Vol. 4, No. 1, pp. 81-88 (2008)
[5] 江松勳,AZO透明導電膜之製備與特性分析,碩士論文,國立成功大學化學工程研究所,台南,2006。
[6] 王慶鈞,王瑞豪,連水養,陳家富,透明導電薄膜之應用概論,機械工業,第338期,第7頁,2011。
[7] J.Joseph, V.Mathew, J.Mathew, K.E.Abraham, “ Studies on Physical Properties and Carrier Conversion of SnO2:Nd Thin Films.” Turk J Phys. 33 (2009) , 37 – 47.
[8] K. Elmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit. ” J. Phys. D 34, 3097, (2001)
[9] F.Maldonado, A.Stashans, “Al-doped ZnO: Electronic, electrical and structural properties. ” J. Phys. Chem. Solids ,Volume 71, Issue 5, (2010), 784–787
[10] Kamada, Y., et al. (2010). “Analysis of subthreshold photo-leakage current in ZnO thin-film transistors using indium-ion implantation.” Solid-State Electronics 54(11): 1392-1397
[11] Biswal, R. R., et al. (2010). “Fluorine doped zinc oxide thin films deposited by chemical spray, starting from zinc pentanedionate and hydrofluoric acid: Effect of the aging time of the solution. “ Materials Science and Engineering B-Advanced Functional Solid-State Materials.” 174(1-3): 46-49.
[12] Olvera, M. D. L., et al. (2002). "ZnO : F thin films deposited by chemical spray: effect of the fluorine concentration in the starting solution. “ Solar Energy Materials and Solar Cells. ” 73(4): 425-433.
[13] Kim, P.-Y., et al. (2008). “Structure and properties of IZO transparent conducting thin films deposited by PLD method. ” Journal of the Korean Physical Society 53(1): 207-211.
[14] A R Babar, P R Deshamukh, R J Deokate, D Haranath, C H Bhosale, K Y Rajpure, “Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. ” J. Phys. D: Appl. Phys. 41 (2008) 000000
[15] Nomura, K., et al. (2003). “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. ” Science 300(5623): 1269-1272.
[16] Nomura, K., et al. (2004). "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors." Nature 432(7016): 488-492.
[17] Yabuta, H., et al. (2006). “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. ” Applied Physics Letters 89(11): 3.
[18] Furuta, M., et al. (2012). “Electrical Properties of the Thin-Film Transistor With an Indium-Gallium-Zinc Oxide Channel and an Aluminium Oxide Gate Dielectric Stack Formed by Solution-Based Atmospheric Pressure Deposition. ” Ieee Electron Device Letters 33(6): 851-853.
[19] Hiroyuki Orita. et al. (2011). Method of forming metal oxide film and apparatus for forming metal oxide film, US 20110151619 A1. 2011-6-23
[20] 詹逸民,葉昱均,矽薄膜太陽能電池技術,工研院太陽能光電中心,工業材料雜誌258期,2008。
[21] M.X.Wang, M.Wong, X.J.Shi, D.L.Zhang, “Effective Channel Mobility of Poly-Silicon Thin Film Transistors.” IEEE, 2006,1395 - 1397.
[22] H. A. Wriedt, “The O−Zn (Oxygen-Zinc) system.” Journal of Phase Equilibria, Volume 8, Issue 2, 1987,166-176.
[23] Kamiya, T., et al. (2010). “Present status of amorphous In-Ga-Zn-O thin-film transistors. ” Science and Technology of Advanced Materials 11(4): 23.
[24] Hosono, H. (2006). “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. ” Journal of Non-Crystalline Solids 352(9-20): 851-858.
[25] Nomura, K., et al. (2006). “Amorphous oxide semiconductors for high-performance flexible thin-film transistors. ” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45(5B): 4303-4308.
[26] D. Y. Cho, J. Song, K. D. Na, C. S. Hwang,J. H. Jeong, J. K. Jeong, and Y-Gon Mo, Appl. Phys. Lett. 94, 112112 (2009)
[27] 陳仲宜,莊允中,經濟部技術處產業技術知識服務(ITIS)計畫,前瞻奈米鍍膜技術與潛力市場探索,2005。
[28] M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Thin Solid films 403–404 (2002) 485.
[29] Yabuta, H., et al. (2006). “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. ” Applied Physics Letters 89(11): 3.
[30] Shin, J.-H. and D.-K. Choi (2008). “Effect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering. ” Journaliet of the Korean Physical Society 53(4): 2019-2023.
[31] Kim, P.-Y., et al. (2008). “Structure and properties of IZO transparent conducting thin films deposited by PLD method. ” Journal of the Korean Physical Society53(1): 207-211.
[32] Barankin, M. D., et al. (2007). “Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. ” Solar Energy Materials and Solar Cells 91(10): 924-930.
[33] Choi, J. H., et al. (2010). “Effect of Sintering Time at Low Temperature on the Properties of IGZO TFTs Fabricated by Using the Sol-gel Process. ” Journal of the Korean Physical Society 57(6): 1836-1841.
[34] “Sol-gel technologies and their products”, http://www.chemat.com/, CHEMAT Technology, Inc.
[35] Aguilar-Frutis, M.; Garcia, M.; Falcony, C.; Plesch, G.; Jimenez-Sandoval, S., “A study of the dielectric characteristics of aluminum oxide thin films deposited by spray pyrolysis from Al(acac)3.” Thin Solid Films,389, 2001, 200-206.
[36] Perednis, D. and L. J. Gauckler (2005). “Thin film deposition using spray pyrolysis. ” Journal of Electroceramics 14(2): 103-111.
[37] J.C.Viguie, J.Spitz (1975 ). “Chemical Vapor Deposition at Low Temperatures.” Journal of the Electrochemical Society, vol. 122, pp. 585-588.
[38] Nakaruk, A. and C. C. Sorrell (2010). “Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films. ” Journal of Coatings Technology and Research 7(5): 665-676.
[39] W. Siefert, “Corona spray pyrolysis: A new coating technique with an extremely enhanced deposition efficiency. ” Thin Solid Films, 120 (1984) 261-214.
[40] R. J. Lang, “ULTRASONIC ATOMIZATION OF LIQUIDS. ” Journal of the Acoustical Society of America, vol. 34, pp. 6-&, 1962.
[41] Piezoelectricity http://en.wikipedia.org/wiki/Piezoelectricity
[42] 化學品數據庫http://www.basechem.org/chemical/26952
[43] http://www.chemicalbook.com/ChemicalProductProperty_CN_CB3209552.htm
[44] Yeh, H. C., et al. (1982). “METAL-ACETYLACETONATE CHELATE CROSSLINKED GELS. ” Journal of Polymer Science Part a-Polymer Chemistry 20(9): 2575-2602.
[45] Sigma Aldrich http://www.sigmaaldrich.com/catalog/product/aldrich
[46] Alfa Aesar
http://www.fishersci.com/ecomm/servlet/ fsproductdetail_10652_ 14953350__-1_0
[47] AENCORE Chemical Co. http://aencore.com/pro/detail2.php?id=472
[48] http://rocoes.com.tw/2008c/glass/corning.htm
[49] Onyiriuka, E. C., et al. (1998). “Effect of RCA cleaning on the surface chemistry of glass and polysilicon films as studied by ToF-SIMS and XPS. ” Surface and Interface Analysis 26(4): 270-277.
[50] W. Kern, Ed., Handbook of Semiconductor Cleaning Technology, Noyes Publishing: Park Ridge, NJ, 1993, Ch 1.
[51] Lehraki, N., et al. (2012). “ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. ” Current Applied Physics 12(5): 1283-1287.
[52] 羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹─SEM,小奈米大世界,2003。
[53] http://lnnano.cnpem.br/laboratories/lme/facilities/tem-feg-jem-2100f/
[54] Introduction to Energy Dispersive X-ray Spectrometry (EDS)
http://micron.ucr.edu/public/manuals/EDS-intro.pdf
[55] http://www.kepu.dicp.ac.cn/photo/07sl02/X%E5%B0%84%E7%BA%BF%
E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1(XPS).pdf
[56] X-ray photoelectron spectroscopy
http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[57] http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html
[58] http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/hall.html
[59] Caillaud, F., et al. (1993). “EFFECT OF PH OF THE SOLUTION ON THE DEPOSITION OF ZINC-OXIDE FILMS BY SPRAY-PYROLYSIS. ” Journal of the American Ceramic Society 76(4): 998-1002.
[60] Miller, A. P. (1941). “Lange's Handbook of Chemistry, 4th edition.” American Journal of Public Health and the Nations Health 31(12): 1324-1324.
[61] Tsay, C.-Y. and T.-Y. Yan (2014). “Solution processed amorphous InGaZnO semiconductor thin films and transistors.” Journal of Physics and Chemistry of Solids 75(1): 142-147.
[62] http://chemwiki.ucdavis.edu/Physical_Chemistry/Kinetics/Modeling_Kinetics/
Temperature_Dependence_of_Reaction_Rates/ The_Arrhenius_Law/Arrheniu s_ Equation
[63] Arrhenius equation http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Arrhenius_equation.html
[64] Wienke, J. and A. S. Booij (2008). “ZnO : In deposition by spray pyrolysis - Influence of the growth conditions on the electrical and optical properties.” Thin Solid Films 516(14): 4508-4512.
[65] Abdullah, N. A., et al. (2012). “Chelating Agents Role on Thermal Characteristics and Phase Formation of Modified Cerate-Zirconate via Sol-gel Synthesis Route. ” International Journal of Electrochemical Science 7(10): 9401-9409.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *