帳號:guest(3.129.23.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):俞孟廷
論文名稱(中文):利用鍺奈米晶體實現具低漏電流之二氧化鈦MIM電容
論文名稱(外文):Improved Leakage Current for TiO2-Based MIM Capacitors by Embedding Ge Nanocrystals
指導教授(中文):巫勇賢
指導教授(外文):Wu, Yung-Hsien
口試委員(中文):高瑄苓
鄭淳護
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011570
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:59
中文關鍵詞:二氧化鈦MIM電容氮氣電漿處理鍺奈米晶體庫倫阻斷效應
外文關鍵詞:crystalline TiO2MIM capacitorsnitrogen plasmaGe nanocrystalsCoulomb blockade
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在以Pd為電極,結晶態的TiO2為介電層的金屬-絕緣層-金屬 (metal-insulator-metal, MIM) 電容中,可以透過氮氣電漿處理鈍化因晶界引起的缺陷來減小漏電流;繼續將Ge奈米晶粒 (nanocrystals, NCs) 放入結晶態TiO2中,可以再將漏電流抑制約1000倍,在-1 V時達到了4.610-7 A/cm2,同時也保持了極高的電容密度25.2 fF/μm2;奈米晶粒在此處的作用為捕捉電子,引發庫倫阻斷效應 (Coulomb blockade effect) 或是形成內建電場來補償外加電場,達到減小漏電流的目的。
本篇論文中的MIM電容還有一些令人感興趣的優點,像是小的溫度電容係數 (temperature coefficient of capacitance, TCC) 88 ppm/℃,低的介電消散角度 (dielectric loss tangent) 0.02,以及令人滿意的可靠度,在2.5 V加壓的情況下十年後電容變化率為1.74%,此MIM電容不但擁有卓越的表現,同時此低漏電流/高可靠度的MIM電容對應用於下個世代的電路中具有極大的潛力。
With Pd as electrode, crystalline TiO2-based MIM capacitors were found to demonstrate improved leakage current by adopting nitrogen plasma treatment due to the passivation of grain boundary related defects. Through the introduction of Ge nanocrystals into crystalline TiO2, the leakage current can be further suppressed by near 3 orders to be 4.610-7 A/cm2 at -1 V while maintaining high capacitance density of 25.2 fF/μm2. The major role of nanocrystals is to trap electrons and then suppress leakage current by inducing Coulomb blockade effect or building an internal field to compensate the applied external field. The MIM capacitors developed in this work also display other intriguing features in terms of small TCC of 88 ppm/℃, low loss tangent of 0.020 and satisfactory capacitance change of 1.74 % after 10-year operation under 2.5 V stress. The MIM capacitor technology not only exhibits the prominent performance which is advantageous over other TiO2-based capacitors, it also possesses the capability to implement low-leakage/high-reliability MIM capacitors for next generation circuits.
摘要.............................................................................................................................................i致謝..........................................................................................................................................iii目錄...........................................................................................................................................iv圖目錄...................................................................................................................................vii表目錄.....................................................................................................................................x

第一章 序論............................................................................................................................1
1-1 背景介紹............................................................................................................1
1-2 MIM電容的結構與特性..................................................................................2
1-3 MIM電容的應用..............................................................................................3
1-4 研究動機............................................................................................................4
1-5 論文結構............................................................................................................4

第二章 電性量測與文獻回顧…………………………………………………..…............10
2-1 電容的電性量測……………………………………………..………...…....10
2-1-1漏電流…….……………...……..………………...……………...…….10
2-1-2 漏電機制 (leakage mechanisms)……………………………………..11
2-1-3 SILC (stress induced leakage current)………………………………..13
2-1-4電容密度與溫度電容係數………….………………………………....13
2-1-5可靠度分析 (reliability)…………………………………...…………..15
2-1-6消散角度 (loss tangent)…………………………….………………….16

2-2 文獻回顧………………………………………………………………….16
2-2-1 Reduction of Leakage Currents with Nanocrystals.................................16
2-2-2 MIM Capacitors with Crystalline-TiO2/SiO2 Stack.................................17
2-2-3結論…………………………………………………………………..18

第三章 實驗流程..................................................................................................................28
3-1 元件製程..........................................................................................................28
3-1-1 晶片清潔與基板製程……………………………………………...…28
3-1-2 下電極堆疊…………………………………………………………..29
3-1-3 介電層堆疊與處理...............……………..…………………………..29
3-1-4 上電極堆疊………………………………….………………………30
3-2 元件量測…..…………………………………………………………………30

第四章 結果與討論…………………………………………………………………..35
4-1 電容對電壓 (C-V) 特性曲線……………………………………………..35
4-2 電流對電壓 (I-V) 特性曲線……………………………………………...36
4-3 漏電流機制………………………..…………………………………………37
4-4溫度電容係數 (TCC)………………………………………………………..38
4-5 介電層消散角度 (dielectric loss tangent)…………………………………38
4-6 SILC……..................………………………………………………………..39
4-7 可靠度分析…………………….………………….….……………………39
4-8 元件比較……………………………………………………………………..40

第五章 結論與未來展望…………………………………………………………………..51
參考文獻……………………………………………………………………………………. 53
第一章
[1.1] M. Yoshida, T. Kumauchi, K. Kawakita, N. Ohashi, H. Enomoto, T. Umezawa, N.Yamamoto, I. Asano, and Y. Tadaki, “Low temperature metal-based cell integration technology for gigabit and embedded DRAMs”, IEEE IEDM Tech. Dig., p.41, 2007.
[1.2] A. K. Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang and A. Yin, “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits”, IEEE Interconnect Technology International Conference, p. 133, 1999.
[1.3] H. S. P. Wong, “Beyond the conventional transistor”, IBM J. Res. Develop., vol.46, p. 133, 2002.
[1.4] Y. H. Wu, C. C. Lin, Y. C. Hu, M. L. Wu, J.R. Wu, and L. L. Chen, “High performance metal-insualor-metal capacitor using stacked TiO2/Y2O3 as insulator,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1107-1109, 2011.
[1.5] C. H. Cheng, C. K. Deng, H. H. Hsu, P. C. Chen, B. H. Liou, A. Chin, and F. S. Yeh, “Lanthanide-Oxides mixed TiO2 dielectrics for high-κ MIM capacitors,” J. Electrochem. Soc., vol. 157, no. 8, pp. H821-H824, 2010.
[1.6] K. C. Chiang, C. H. Lai, A. Chin, T. J. Wang, H. F. Chiu, J. R. Chen, S. P. McAlister, and C. C. Chi, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” Symp. VLSI Tech., pp. 62-63, 2005.
[1.7] C. C. Huang, C. H. Cheng, A. Chin, and C. P. Chou, “Leakage current improvement of Ni/TiNiO/TaN metal-insulator-metal capacitors using optimized N+ plasma treatment and oxygen annealing,” Electrochem Solid-State Lett., vol.10, no. 10, pp. H287-H290, 2007.
[1.8] C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and A. Chin, “Improvement of the performance of TiHfO MIM capacitors by using a dual plasma treatment of the lower electrode,” IEEE Electron Device Lett. , vol. 29, no. 10, pp. 1105-1107, 2008.
[1.9] C. H. Cheng, H. C. Pan, S. H. Lin, H. H. Hsu, C. N. Hsiao, C. P. Chou, F. S. Yeh, and A. Chin, “High-Performance MIM capacitors using a high-κ TiZrO dielectric,” J. Electrochem. Soc., vol. 155, no. 12, pp. G295-G298, 2008.
[1.10] C. C. Huang, C. H. Cheng, K. T. Lee, and B. H. Liou, “High-Performance metal-insulator-metal capacitor using quality properties of high-κ TiPrO dielectric,” J. Electrochem. Soc., vol. 156, no. 4, pp. G23-G27, 2009.
[1.11] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2 stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 104-106, 2012.
[1.12] D. B. Farmer, and R. G. Gordon, “High density Ru nanocrystal deposition for nonvolatile memory applications,” J. Appl. Phys. vol. 101, pp. 124503, 2007.
[1.13] C. Kang, H. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, 2003.
[1.14] M. Lukosius, C. Wenger, S. Pasko, H. Mussig, B. Seitzinger, and C. Lohe, “Atomic vapor deposition of titanium nitride as metal electrodes for gate-last CMOS and MIM devices”, Chem. Vap. Deposition, vol. 14, 2008.
[1.15] B. H. Tsao, S. F. Carr, and J. A. Weimer, “Lead zirconatetitanate (PZT) film capacitor with a multilayer construction,” IEEE, pp. 263-270, 1998.
[1.16] E. Lipp, Z. Shahar, B. C. Bittel, P. M. Lenahan, D. Schwendt, H. J. Osten, and M. Eizenberg, “Trap-assisted conduction in Pt-gated Gd2O3/Si capacitors”, Appl. Phys. Lett., vol. 109, p.073724, 2011.
[1.17] T. Iida, M. Nakahara, S. Gotoh, and H. Akibah, ”Precise capacitor structure suitable for submicron mixed analog/digital ASICs”, IEEE 1990 Custom Integrated Circuits Conference, p.13, 1990.
[1.18] S. J. Kim, “High-κmetal-insulator-metal (MIM) capacitors for RF/mixed-signal IC applications”, National University of Singapore, degree of doctor, 2005.
[1.19] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush, R. Groves, N. Greco, D. Harame, and T. Tewksbury, “High reliability metal insulator metal capacitors for silicon germanium analog applications”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 191-194, 1997.
[1.20] T. Yoshitomi, Y. Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H. S. Momose , K. Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa and H. Iwa, “High performance MIM capacitor for RF BiCMOS/CMOS LSls”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.133-136, 1999.
[1.21] “International technology roadmap for semiconductors”, ITRS, 2011 edition.
第二章
[2.1] David R. Lide, “CRC Handbook of Chemistry and Physics version 2008,” pp. 12-114, 2008.
[2.2] J. Rovertson, “Band structures and band offsets of high K dielectrics on Si,” Applied Surf. Sci., vol. 190, pp. 2-10, 2002.
[2.3] M. N. JONES, “Leakage current behavior of reactive RF sputtered HfO2 thin films”, University of Florida, 2003.
[2.4] J. I. Han,W. K. Kim, S. J. Hong and S. K. Park, “Effects of post annealing on current-voltage characteristics of metal-insulator(Ta2O5)-metal type thin-film diodes”, Journal of the Korean Physical Society, vol. 39, p.868, 2001.
[2.5] C. W. Chen,T. C. Chang, P. T. Liu, T. M. Tsai, H. C. Huang, J. M. Chen, C. H. Tseng, C. C. Liu, T. Y. Tseng, “Investigation of the electrical properties and reliability of amorphous SiCN”, Thin Solid Films, 2004.
[2.6] A. Krause, W. M. Weber, U. Schöder, D. Pohl, B. Rellinghaus, J. Heitmann, and T. Mikolajick, “Reduction of leakage currents with nanocrystals embedded in an amorphous matrix metal-insulator-metal capacitor stacks,” Appl. Phys. Lett., vol. 99, p. 222905, 2011.
[2.7] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2 stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 104-106, 2012.

第三章
[3.1] H. Choi, M. Chang, M. Jo, S. J. Jung, and H. Hwang, “Improved memory characteristics of Ge nanocrystals using a LaAlO3 buffer layer,” Electrochem. Solid-State Lett., vol. 11, no. 6, pp. 154-156, 2008.

第四章
[4.1] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2 stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 104-106, 2012.
[4.2] T. C. Chang, S. T. Yan, P. T. Liu, C. W. Chen, S. H. Lin, and S. M. Sze, “A novel approach of fabricating germanium nanocrystals for nonvolatile memory application,” Electrochem. Solid-State Lett., vol. 7, no. 1, pp. G17-G19, 2007.
[4.3] D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, and T. Hirai, “Photocatalytic H2O2 production from Ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles,” ACS Catal., vol. 2, no. 4, pp. 599-603, 2012.
[4.4] C. C. Wang, Y. K. Chiou, C. H. Chang, J. Y. Tseng, L. J. Wu, C. Y. Chen, and T. B. Wu, “Memory characteristics of Au nanocrystals embedded in metal-oxide-semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide,” J. Phys. D: Appl. Phys., vol. 40, pp. 1673-1677, 2007.
[4.5] N. Negishi, K. Takeuchi, T. Ibusuki, “Surface structure of the TiO2 thin film photocatalyst,” J. Mater. Sci., vol. 33, pp. 5789-5794, 1998.
[4.6] J. H. Lee, Y. C. Lin, and B. H. Chen, “A new cost-effective metal-insulator–metal capacitor processed at 350 °C using Ni2Si fully silicided amorphous silicon electrodes,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 672-676, 2011.
[4.7] R. Padmanabhan, N. Bhat, and S. Mohan, “Performance and reliability of Gd2O3 and stacked Gd2O3-Eu2O3 metal-insulator-metal capacitors,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1523-1528, 2013.

第五章
[5.1] F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory application,” Appl. Phys. Lett., vol. 90, p. 222104, 2007.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *