帳號:guest(3.15.144.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫晟恩
作者(外文):Sun, Cherng-En
論文名稱(中文):以pn二極體做為快閃記憶體之電荷儲存層的電性討論
論文名稱(外文):Electrical Characteristics for Flash Memory with pn-Junction Diode as the Charge-Trapping Layer
指導教授(中文):巫勇賢
口試委員(中文):鄭淳護
高瑄苓
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011565
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:55
中文關鍵詞:快閃記憶體二極體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:409
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於快閃記憶體具備資料可重複地讀寫、長時間之資料保存能力之優點,不僅可使用於程式碼之儲存,近年來已廣泛應用於數位相機、手機及其他個人隨身電子產品之資料儲存媒體。但在現今以省電低耗能的趨勢下,操作電壓也必須隨之降低,因此通常會需要降低元件的穿隧氧化層厚度來降低操作電壓與提升操作速度,但這同時也會影響到元件的特性以及造成可靠度的問題。
在此研究中,我們使用ZnO和NiO堆疊的結構來取代一般記憶體的電荷儲存層。其中ZnO此材料由於傳導帶位置低,可以增加寫入時的穿隧電流以利電子進入儲存層,並且防止儲存的電荷由穿隧氧化層流失,而NiO則提供了許多的缺陷來供電荷儲存。另外,由於ZnO和NiO堆疊會形成一個pn二極體,其二極體的內建電場在寫入時可以防止電子從控制氧化層流向閘極,在抹除時則幫助元件加速電子的排出,以達到小電壓操作。在電性方面,相較於使用單純的ZnO或NiO當電荷儲存層的記憶體,使用ZnO和NiO堆疊形成電荷儲存層的記憶體有著較大的優勢。
摘要.……………………………………………………………………………………….……i
致謝…………………………………………………………………………………………...iii
總目錄........................................................................................................................................iv
圖目錄.....................................................................................................................................vii

第一章 序論………………………………………………………………………………......1
1-1 前言……………………………………………………………………………1
1-2 半導體記憶體簡介……………………………………………………………2
1-3 電阻式記憶體特性介紹………………………………………………………3
1-3-1 記憶窗口與磁滯曲線 …………………..…………………………….4
1-3-2 寫入/抹除/讀取速度與機制………………………………………….6
1-3-3 操作電壓……………………………………………………………….8
1-3-4 可靠度分析………………………………………………………….....8
第二章 文獻回顧及研究動機…............................................................................................15
2-1 Nanocrystals for Silicon-Based Memory Devices……………………............15
2-2 Poly-Si Nanowire Nonvolatile Memory with Nanocrystal Indium–Gallium–Zinc–Oxide Charge-Trapping Layer....................................15
2-3 Novel Dual Layer Floating Gate Structure as Enabler of Fully Planar Flash memory……………………………………………………………………......16
2-4 Novel Charge Trap Devices with NCBO Trap Layers for NVM......................16
2-5 Nonvolatile Memory Effects of NiO Layers Embedded in Al2O3 High-k Dielectrics Using Atomic Layer Deposition…………………………………17
2-6 研究動機……………………………………………………………………17

第三章 實驗流程..................................................................................................................30
3-1 pn二極體之製程流程.....................................................................................30
3-2 雙層電荷儲存層記憶體之製程流程….......................................................31
3-3 單層電荷儲存層記憶體之製程流程….......................................................32
3-4 量測儀器的建立……………………….......................................................32

第四章 實驗結果與討論......................................................................................................36
4-1 退火溫度的決定………………………..........................................................36
4-1-1 二極體的比較………………………………..................................36
4-1-2 雙層電荷儲存層記憶體的比較......................................................37
4-2 電性分析…......................................................................................................37
4-2-1 電容-電壓特性與磁滯量測……………………..………………...37
4-2-2 閘極漏電流量測……………...……………………………………39
4-2-3 資料保存度量測…………………...………………………………39
4-2-4 操作耐用性量測…………………………..………………………40

第五章 結論與未來展望.......................................................................................................50
參考文獻..................................................................................................................................51
[1] J. Bardeen and W. H. Brattain, “The Transistor, a Semiconductor Triode,” Phys. Rev., vol. 71, pp. 230-231, 1984.
[2] J. S. Kilby, “Invention of the Integrated Circuit,” IEEE Trans. Electron Devices, vol. ED-23, no. 7, pp. 648-654, 1976.
[3] D. Kahng and S. M. Sze, “A Floating Gate and its Application to Memory Devices,” Bell Syst. Tech., vol. 46, p. 1288, 1967.
[4] R. H. Dennard, United State Patent 3387286, July 14, 1967.
[5] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connel, and R. E. Oleksiok, “Metal Insulator Semiconductor Transistors as a Nonvolatile Storage” IEDM Tech. Dig., abstract 59, 1967.
[6] M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Megnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett., vol. 61, no. 21, pp. 2472-2475, 1988.
[7] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced Megnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange,” Phys. Rev. B, vol. 39, no. 7, pp. 4828-4830, 1989.
[8] G. A. Prinz, “Magnetoelectronics,” Science, vol. 282, pp. 1660-1663, 1988.
[9] S. Lai and T. Lowrey, “OUM - A 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications,” IEDM Tech. Dig., pp. 803-806, 2005.
[10] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot Electron Emission in n-Channel IGFETs,” IEEE Solid-State Circuits, vol. 14, p. 442, 1979.
[11] M. Lenzlinger, “Fowler-Nordheim Tunneling in Thermal Grown SiO2,” Appl. Phys. Lett., vol. 40, pp. 278-283, 1969.
[12] D. A. Neamen, “Semiconductor physics and device,” p. 43.
[13] S. Wolf, “Silicon Processing for the VLSI ERA,” Lattice Press., p. 435, 1995.
[15] D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, “Statistical Model of Reliability and Scaling Projections for Flash Memories,” IEDM Tech. Dig., pp. 3221-3224, 2001.
[16] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti, “New Technique for Fast Characterization of SILC Distribution in Flash Arrays,” Proc. IRPS., pp. 73-80, 2001.
[17] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in Flash Memories after Program/Erase Cycling,” Proc. IRPS., pp. 1-6, 2002.
[18] S. K. Ray, S. Maikap, W. Banerjee, and S. Das, “Nanocrystals for Silicon-Based Light-Emitting and Memory Devices,” J. Appl. Phys., vol. 46, no. 15, p. 153001, 2013.
[19] L. C. Chen, Y. C. Wu, T. C. Lin, J. Y. Huang, M. F. Hung, J. H. Chen, and C. Y. Chang, “Poly-Si Nanowire Nonvolatile Memory with Nanocrystal Indium–Gallium–Zinc–Oxide Charge-Trapping Layer,” IEEE Electron Device Lett., vol. 31, no. 12, 2010.
[20] P. Blomme1, M. Rosmeulen, A. Cacciato, M. Kostermans, C. Vrancken, S. V. Aerde, T. Schram, I. Debusschere, M. Jurczak, and J. V. Houdt, “Novel Dual Layer Floating Gate Structure as Enabler of Fully Planar Flash Memory,” Symp. VLSI Techn. Dig. of Techn. Papers, pp. 129-130, 2010.
[21] K. H. Joo, C. R. Moon, S. N. Lee, X. Wang, J. K. Yang, I. S. Yeo, D. Lee, O. Nam, U. I. Chung, J. T. Moon, and B. I. Ryu, “Novel Charge Trap Devices with NCBO Trap Layers for NVM or Image Sensor,” IEDM Tech. Dig., session 35.5, 2006.
[22] W. Cho, Sun S. Lee, T. M. Chung, C. G. Kim, K. S. An, J. P. Ahn, J. Y. Lee, J. W. Lee, and J. H. Hwang, “Nonvolatile Memory Effects of NiO Layers Embedded in Al2O3 High-k Dielectrics Using Atomic Layer Deposition,” Electrochem. Solid State Lett., vol. 13, pp. H209-H212, 2010.
[23] S. H. Jee, H. Park, S. H. Kim, J. W. Lee, and Y. S. Yoon, “Properties of Hetero Structured Diode with n-Type ZnO and p-Type NiO,” J. Korean Phy. Soc., vol. 53, no. 1, pp. 446-450, 2008.
[24] H. Zhou, Y. Qu, T. Zeida, and X. Duan, “Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures,” Energy Environ. Sci., pp. 6732-6743, 2012.
[25] M. J. Ma, B. Lu, T. T. Zhou, Z. Z. Ye, J. G. Lu, and X. H. Panm, “Orientation Dependent Band Alignment for p-NiO/n-ZnO Heterojunctions,” J. Appl. Phys., vol. 113, p. 163704, 2013.
[26] M. Tyagi, M. Tomarb, and V. Gupta, “Fabrication of An Efficient GLAD-Assisted p-NiO Nanorod/n-ZnO Thin Film Heterojunction UV Photodiode,” J. Mater. Chem. C, vol. 2, pp. 2387-2393, 2014.
[27] B. Euzent, N. Boruta, J. Lee, and C. Jenq, “Reliability Aspects of A Floating Gate EEPROM,” Proc. Int. Reliability Phys. Symp., pp. 11-16, 1981.
[28] C. L. Yuan, P. S. Lee, and S. L. Ye, “Formation, Photoluminescence and Charge Storage Characteristics of Au Nanocrystals Embedded in Amorphous Al2O3 Matrix,” Europhys. Lett., vol. 80, no. 6, p. 67003, 2007.
[29] M. Zhang, W. Chen, S. J. Ding, Z. Y. Liu, Y. Huang, Z. W. Liao, and D. W. Zhang, “Physical and Electrical Characterization of Atomic-Layer-Deposited Ru Nanocrystals Embedded into Al2O3 for Memory Applications,” J. Appl. Phys., vol. 41, no. 3, p. 032007, 2008.
[30] Y. H. Wu, L. L. Chen, Y. S. Lin, C. H. Chang, J. H. Huang, and G. P. Yu, “Nonvolatile Memory with TiN Nanocrystals Three-Dimensionally Embedded in Si3N4 Formed by Spinodal Phase Segregation,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 617-619, 2009.
[31] F. M. Yang, T. C. Chang, P. T. Liu, P. H. Yeh, U. S. Chen, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Using Double Layer CoSi2 Nanocrystals to Improve the Memory Effects of Nonvolatile Memory Devices,” Appl. Phys. Lett., vol. 90, no. 21, p. 21208, 2007.
[32] S. K. Samanta, P. K. Singh, Won Jong Yoo, G. Samudra, Y. C. Yeo, L. K. Bera, and N. Balasubramanian, “Enhancement of Memory Window in Short Channel Non-Volatile Memory Devices Using Double Layer Tungsten Nanocrystals,” IEDM Tech. Dig., pp. 170-173, 2005.
[33] X. J. Liu, M. Y. Gao, A. D. Li, Y. Q. Cao, X. F. Li, B. L. Guo, Z. Y. Cao, and D. Wu, “Monolayer FePt Nanocrystal Self-Assembly Embedded into Atomic-Layer-Deposited Al2O3 Films for Nonvolatile Memory Applications,” J. Alloys Comp, vol. 588, pp. 103-107, 2014.
[34] Z. Tang, X. Zhu, H. Xu, Y. Xia, J. Yin, Z. Liu, A. Li, and F. Yan, “Impact of the Interfaces in the Charge Trap Layer on the Storage Characteristics of ZrO2/Al2O3 Nanolaminate-Based Charge Trap Flash Memory Cells,” Mater. Lett., vol. 92, pp. 21-24, 2013.
[35] Z. Y. Cao, A. D. Li, X. Li, Y. Q. Cao, and D. Wu, “Ti-Al-O Nanocrystal Charge Trapping Memory Cells Fabricated by Atomic Layer Deposition,” Thin Solid Films, vol. 563, pp. 6-9, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *