帳號:guest(18.117.158.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳郁翔
作者(外文):Chen, Yu-Hsiang
論文名稱(中文):鰭式穿隧場效電晶體電性及可靠度之研究
論文名稱(外文):Fin-Shape Tunnel Field-Effect Transistor Performance and Reliability Study
指導教授(中文):吳永俊
指導教授(外文):Wu, Yung-Chun
口試委員(中文):胡心卉
陳旻政
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011562
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:51
中文關鍵詞:鰭式場效電晶體穿隧式場效電晶體非對稱閘極能帶間穿隧效應可靠度研究
外文關鍵詞:Fin-Shape FETTunnel FETAsymmetry gateBand-to-band tunneling (BTBT)Reliability Study
相關次數:
  • 推薦推薦:0
  • 點閱點閱:651
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
可攜式產品的普及,對於產品待機時的功率消耗非常注重。但隨著元件臨界電壓的微縮,傳統電晶體面臨次臨界擺幅的極限(60mv/dec@300K),導致元件的待機電流上升。因此,此篇論文使用的穿隧電晶體是以不同電流機制來突破次臨界擺幅的極限,可以達成微縮元件同時又不失去良好電性的目的。
本文使用P-I-N結構之穿隧電晶體。其利用量子穿隧機制來進行操作,使元件可以經由不同於MOS電晶體飄移電流的穿隧電流來達到快速開關的特性,使元件在OFF的狀態下漏電電流可以減少,達成低功率消耗。
在此篇論文中,我們是第一個提出非對稱閘極穿隧式電晶體的研究。在此研究中我們使用SOI晶圓來製作元件。我們將閘極結構設計於奈米線及平面結構上,形成不對稱的閘極結構。非對稱的閘極結構使閘極對通道控制能力不同,在源極及通道接面上為三項閘極結構,控制能力較佳,使電子的穿隧路徑變小,ION上升。在汲極及通道接面上為平面閘極結構,控制能力較差,使電子穿隧路徑變大,元件的IOFF下降。
非對稱閘極穿隧式電晶體的最小次臨界擺幅達到152mV/dec,平均次臨界擺幅為233mV/dec。其ION可達7×10-7A,IOFF可達1×10-15A,ION/IOFF可達7×108之多。與三向閘極穿隧電晶體結構及平面式穿隧電晶體結構相比有較良好的電性。
我們同時也對非對稱閘極穿隧電晶體做了可靠度的研究,發現元件對positive bias stress以及 hot carrier stress的耐受性較三向閘極穿隧電晶體佳。其原因為非對稱閘極在汲極的平面結構使其電場較小,對元件有較少的破壞。
在本文列出此結構的各項指標,以及實驗數據皆顯示出具鰭式穿隧電晶體具有應用於實際產品的高度價值,同時擁有成為下一世代元件的潛力。
The market demand for portable electric equipment increase dramatically year by year. Although transistors develop toward low cost and high density, maintaining device characteristics becomes difficult due to the device fabrication and physics limitations of the device. Designing a device that different from conventional MOSFET is a necessary way.
This thesis based on P-I-N structure tunnel field effect transistor which operated by quantum tunneling mechanism. Thus, compared with conventional MOSFET operated by drift mechanism, the Tunneling Transistor can achieve fast on/off characteristic and the OFF current can be decrease.
This work is the first time to demonstrate the asymmetric gate tunnel FET. The device is based on SOI wafer. We design the gate structure above nanowire and planar to form asymmetric gate structure. The asymmetric gate structure has different control ability to channel. There is tri-gate structure on source and channel intrinsic junction and the control ability is good. It makes the screening length shorter and leads ION increase. There is planar structure on drain and channel intrinsic junction and the control ability is bad. It makes the screening length longer and leads IOFF smaller than tri-gate tunnel FET.
The asymmetric gate tunnel FET has the SSmin 152mV/dec and SSavg 233mV/dec. ION gets to 7×10-7A and IOFF gets to 1×10-15A. The ON/OFF ration is 7×108. Compare to tri-gate tunnel FET and planar tunnel FET, the AG-TFET has the better electric characteristic.
We also study in the reliability of AG-TFET. In positive bias stress and hot carrier stress analysis, the degradation behaviors after stress are investigated. The AG-TFET presents better reliability than tri-gate TFET after stress. The lesser degradation is due to the peaks of vertical electric field of AG-TFET is lower than tri-gate structure device.
This work shows experimental data for device’s reliability; all the data can display asymmetric gate tunnel field effect transistor has applied to high value actually; it would become the next-generation device.
中文摘要 i

Abstract iii

Acknowledge v

Contents vi

Table Captions viii

Figure Captions ix

Chapter 1 1
Introduction 1
1-1 Introduction of Conventional MOSFET & Low Power Device 1
1-2 Introduction of Tunnel FET Device 9
1-3 Thesis Organization 10

Chapter 2 12
Tunnel FET Mechanism 12
2-1 Basic Principle of Tunnel FET 12
2-2 Screening Length in Tunnel FET 15
2-3 Motivation 19

Chapter 3 21
Device Fabrication and Device Simulation 21
3-1 Device Simulation 21
3-2 Device Fabrication Process 24

Chapter 4 26
Characteristics Analysis 26
4-1 SEM & TEM Analysis 26
4-2 Device Characteristics Analysis 29
4-3 Conclution 35

Chapter 5 36
Reliability Study 36
5-1 High Temperature Performance 36
5-2 Positive Bias Stress Discussion 38
5-3 Hot Carrier Stress Discussion 41
5-4 Conclusion 44

Chapter 6 45

Conclusion 45

Reference 47
Chapter 1 47
Chapter 2 50
Chapter 5 51
Chapter 1
[1-1] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86, pp. 82-85, 1965
[1-2] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices, 3 ed.: John Wiley & Sons,” INC, 2006.
[1-3] Lundstrom, M. S. “The MOSFET revisited: device physics and modeling at the nanoscale,” Proc. IEEE Int. SOI Conf. 1–3 IEEE, 2006.
[1-4] Adrian M. Ionescu & Heike Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” doi:10.1038/nature10679 2011.
[1-5] Bhuwalka, K., Schultze, J. & Eisele, I. A simulation approach to optimize the electrical parameters of a vertical tunnel FET. IEEE Trans. Electron Devices 52, 1541–1547, 2005.
[1-6] Boucart, K. & Ionescu, A. M. Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Devices 54, 1725–1733, 2007.
[1-7] Kam, H., King-Liu, T.-J., Alon, E. & Horowitz, M. Circuit-level requirements for MOSFET-replacement devices. Tech. Digest IEEE Int. Electron Devices Meet. 1 IEEE, 2008.
[1-8] Hanson, S., Seok, M., Sylvester, D. & Blaauw, D. Nanometer device scaling in subthrehold logic and SRAM. IEEE Trans. Electron Devices 55, 175–185, 2008.
[1-9] Chang, L. et al. Practical strategies for power-efficient computing technologies. Proc. IEEE 98, 215–236, 2010.
[1-10] Lucian Shifren, director of device technology at SuVolta, “Leakage power – it’s worse than you think” EE times,2011.
[1-11] Adrian M. Ionescu & Heike Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” doi:10.1038/nature10679 2011.
[1-12] Quinn, J., Kawamoto, G. & McCombe, B. Subband spectroscopy by surface channel
tunneling. Surf. Sci. 73, 190–196, 1978.
[1-13] Banerjee, S., Richardson W., Coleman J. & Chatterjee, A. A new three-terminal
tunnel device. IEEE Electron Device Lett. 8, 347–349, 1987.
[1-14] Takeda, E., Matsuoka, H., Igura, Y. & Asai, S. A band to band tunneling MOS device
B2T-MOSFET. Tech. Digest IEEE Int. Electron Devices Meet. 402–405, IEEE, 1988.
[1-15] Baba, T. Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 31, L455–L457,
1992.
[1-16] Reddick, W. & Amaratunga, G. Silicon surface tunnel transistor. Appl. Phys. Lett. 67,
494–496, 1995.
[1-17] Koga, J. & Toriumi, A. Negative differential conductance in three-terminal silicon
tunneling device. Appl. Phys. Lett. 69, 1435–1437, 1996.
[1-18] Hansch, W., Fink, C., Schulze, J. & Eisele, I. “A vertical MOS-gated Esaki tunneling
transistor in silicon.” Thin Solid Films 369, 387–389, 2000.
[1-19] Aydin, C. et al. “Lateral interband tunneling transistor in silicon-on-insulator.” Appl.Phys. Lett. 84, 1780–1782, 2004.
[1-20] Appenzeller, J., Lin, Y.-M., Knoch J. & Avouris, P. “Band-to-band tunneling in carbon nanotube field-effect transistors.” Phys. Rev. Lett. 93, 196805, 2004.
[1-21] Krishnamohan, T., Kim, D., Raghunathan, S. & Saraswat, K. “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60 mV/dec subthreshold slope.” Tech. Digest IEEE Int. Electron Devices Meet. 947–949, IEEE, 2008.
[1-22] Mayer, F. et al. “Impact of SOI, Si1–xGexOI and GeOI substrates on CMOS
compatible tunnel FET performance.” Tech. Digest IEEE Int. Electron Devices Meet.
163–166 ,IEEE, 2008.
[1-23] Hu, C. et al. Prospect of tunneling green transistor for 0.1 V CMOS. IEEE Int.
Electron Devices Meet. 16.1.1–16.1.4 ,IEEE, 2010.
[1-24] Moselund, K. E. et al. “Comparison of VLS grown Si NW tunnel FETs with different
gate stacks.” Proc. Eur. Solid State Device Res. Conf. 448–451, IEEE, 2009.
[1-25] Int. Technology. Roadmap for Semiconductors (ITRS), 2011, (http://www.itrs.net/Links/2011ITRS/Home2011.htm)
[1-26] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee,” Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (< 50 mV/decade) at Room Temperature,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 437-439, April 2011.
[1-27] F. Mayer, C. Le Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus," F. Mayer, C. Le Royer, J.-F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus," in IEDM Tech. Dig., 2008, pp. 163-166.
[1-28] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu," Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec", IEEE Electron Device Lett., vol. 28, no. 8, pp. 743 - 745, Aug. 2007.
[1-29] T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat," Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With Record High Drive Currents and << 60mV/dec Subthreshold Slope," in IEDM Tech. Dig., 2008, pp. 947-950.
[1-30] J. Appenzeller, J. Knoch, M. T. Björk, H. Riel, H. Schmid, and W. Riess," Toward Nanowire Electronics," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2827 - 2845, Nov. 2008.
[1-31] S. H. Kim, H. Kam, C. Hu and T. J. K. Liu," Germanium-Source Tunnel Field Effect Transistors with Record High ION/IOFF," Symp. VLSI Tec. Dig., 2009, pp. 178 - 179.
[1-32] W. Y. Loh, K. Jeon, C. Y. Kang, J. Oh, P. Patel, C. Smith, J. Barnett, C. Park, T. J. K. Liu, H. H. Tseng, P. Majhi, R. Jammy and C. Hu," Sub-60nm Si Tunnel Field Effect Transistors with Ion >100 μA/μm," in Proc. ESSDERC, 2010, pp. 162 - 165.
[1-33] K. Jeon, W. Y. Loh, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H. H. Tseng, R. Jammy, T. J. King Liu, and C. Hu," Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing," VLSI Tec. Dig., 2010, pp. 121 - 122.
[1-34] A. S. Verhulst, B. Sorée, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken," Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor", J. Appl. Phys., vol. 107, pp. 024518-1 - 024518-8, Jan. 2010.
Chapter 2
[2-1] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee,” Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (< 50 mV/decade) at Room Temperature,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 437-439, April 2011.
[2-2] K. Jeon, W. Y. Loh, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H. H. Tseng, R. Jammy, T. J. King Liu, and C. Hu," Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing," VLSI Tec. Dig., 2010, pp. 121 - 122.
[2-3] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu," Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec", IEEE Electron Device Lett., vol. 28, no. 8, pp. 743 - 745, Aug. 2007.
[2-4] F. Mayer, C. Le Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus,” Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance,” IEDM Tech. Dig., 2008, p. 163-167.
[2-5] T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat,” Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With Record High Drive Currents and <60mV/dec Subthreshold Slope,” IEDM Tec. Dig. 2008, pp. 947-949.
[2-6] W. Y. Loh, K. Jeon, C. Y. Kang, J. Oh, P. Patel, C. Smith, J. Barnett, C. Park, T. J. K. Liu, H. H. Tseng, P. Majhi, R. Jammy and C. Hu," Sub-60nm Si Tunnel Field Effect Transistors with Ion >100 μA/μm," ESSDERC, 2010, pp.162-165.
[2-7] S. H. Kim, H. Kam, C. Hu and T. J. K. Liu," Germanium-Source Tunnel Field Effect Transistors with Record High ION/IOFF," Symp. VLSI Tec. Dig., 2009, pp. 178 - 179.
[2-8] A. S. Verhulst, B. Sorée, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken," Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor", J. Appl. Phys., vol. 107, pp. 024518-1 - 024518-8, Jan. 2010.
[2-9] Y. Lu, A. Seabaugh, P. Fay, S. J. Koester, S. E. Laux, W. Haensch, and S. O. Koswatta," Geometry dependent Tunnel FET performance - Dilemma of electrostatics vs. quantum confinement," Device Research Conference, 2010, pp. 17-18.
[2-10] Min Hung Lee, Member, IEEE, Jhe-Cyun Lin, and Cheng-Ying Kao,” Hetero-Tunnel Field-Effect-Transistors With Epitaxially Grown Germanium on Silicon,” TED, VOL. 60, NO. 7, JULY 2013, pp. 2423-2427
[2-11] S. Richter, C. Sandow, A. Nichau, S. Trellenkamp, M. Schmidt, R. Luptak, K. K. Bourdelle, Q. T. Zhao,”Ω-Gated Silicon and Strained Silicon Nanowire Array Tunneling FETs,” EDL, VOL. 33, NO. 11, NOVEMBER 2012, pp. 1535-1537
[2-12] Qianqian Huang, Zhan Zhan, Ru Huang*, Xiang Mao, Lijie Zhang, Yingxin Qiu, Yangyuan Wang, “Self-Depleted T-gate Schottky Barrier Tunneling FET with Low Average Subthreshold,” IEDM, 2011, pp. 392-385
Slope and High ION/IOFF by Gate Configuration and Barrier Modulation
[2-13] Isabelle Ferain, Cynthia A. Colinge & Jean-Pierre Colinge, “Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors,” NATURE, VOL 479, 17 NOVEMBER 2011, pp. 311-316

Chapter 5
[5-1] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices, 3 ed.: John Wiley & Sons,” INC., 2006.
[5-2] Ashraf A. Osman, Mohamed A. Osman, Numan S. Dogan, and Mohamed A. Imam, “Zero-Temperature-Coefficient Biasing Point of Partially Depleted SOI MOSFET’s,” TED., 1995.
[5-3] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFETs,” IEEE Trans. Electron Devices, vol. ED-31, no. 9, pp. 1116–1125, Sep. 1984.
[5-4] X. Y. Huang, G. F. Jiao, W. Cao, D. Huang, H. Y. Yu, Z. X. Chen, N. Singh, G. Q. Lo, D. L. Kwong, and Ming-Fu Li, “Effect of Interface Traps and Oxide Charge on Drain Current Degradation in Tunneling Field-Effect Transistors,” IEEE EDL, VOL. 31, NO. 8, AUGUST 2010
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *