帳號:guest(18.220.91.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李冠毅
論文名稱(中文):多晶鍺無接面式通道應用於奈米線通道快閃記憶體元件之特性分析
論文名稱(外文):Characteristics of Polycrystalline-Germanium Flash Memory Devices with Planar and Junctionless Nanowire Channel structures
指導教授(中文):張廖貴術
口試委員(中文):趙天生
謝嘉民
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011558
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:多晶鍺快閃記憶體
外文關鍵詞:POLYGE
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,快閃記憶體的需求量大幅上升。然而,在元件日漸微縮的趨勢下,平面式元件微縮空間有限,造成元件密度難增且製程難度跟著大幅的提升,因此如何提高電性又要能降低製程難度為目前最重要的課題之一。有些解決方法已漸漸被提出,如多晶矽的使用、矽化鍺材料的應用、奈米線通道的結構、無接面快閃記憶體元件的應用等等。本篇論文以多晶鍺無接面奈米式通道快閃記憶體元件為主體,加以研究並探討電性的表現。
在本論文中,第一個實驗是將多晶鍺通道運用至平面式電容快閃記憶體元件,並與多晶矽的電容元件做比較。多晶矽電容元件在寫入速度以及抹除速度上都比多晶鍺有著較優秀的表現,在電荷保持力部分,在室溫下,多晶鍺電容元件與多晶矽電容元件具有相同的堆疊結構,所以常溫下兩者表現相當;而高溫之下多晶矽的元件電荷保持力,相對較多晶鍺來的好。而在耐久力方面,Poly-Ge電容元件整體元件的可靠度欠佳,可能是在於元件的穿隧介電層品質不佳所至。而Poly-Si電容元件的表現相對則較為穩定。
在第二個實驗中,我們將多晶鍺材料應用在無接面奈米通道式快閃記憶體元件上,試圖觀察是否可以提升多晶鍺這種通道在無接面式奈米通道式元件的表現。在寫入速度上,Poly-SiNW有著較快的寫入速度,在抹除速度上依然為Poly-SiNW較快。另外,在電荷保持力的比較中,常溫之下兩者差異不大,而在高溫(850C)之下Poly-SiNW表現較佳。而在耐久力部分,Poly-SiNW元件只需花相對較少的時間即可以完成寫抹循環,所以對於穿隧氧化層的傷害也會較少,所以有較好的耐久力表現。
在第三個實驗裡,我們想探討無接面元件的通道濃度是否也會對多晶鍺後對元件的表現造成影響,寫入速度的表現中,PolyGe-3元件的寫入速度是最快的,而在抹除上PolyGe-3元件的抹除速度比PolyGe-2元件以及PolyGe-1元件都還要慢。而在電荷保持力上的表現,PolyGe-3元件有著通道有著較少空的能態,所以表現較為其他兩者佳。此外三種元件的耐久力的表現也會因為快速寫抹的能力而有所提升,是相當有潛力應用在未來3D立體堆疊的記憶體元件上的。
從上面三個實驗中我們知道,多晶鍺的確在於元件的寫抹速度,電荷保持力以及電荷耐久力的各項表現上還不足以與多晶矽匹敵,但藉由無接面奈米通道式的這種結構改善了其電性,大大提升了多晶鍺在快閃記憶體這方面的潛力。若能再把多晶鍺的品質提升,與多晶矽在相同的起跑點上再來做比較,相信多晶鍺是會有很大的發展空間。況且在元件不斷微縮的趨勢之下,多晶鍺無接面奈米通式元件可能會是未來的發展趨勢,以上研究結果對未來快閃記憶體元件的發展是很有幫助的。
The flash memory devices with some advantages like low power consumption, higher device density and portable devices are more needed recently. However, as the devices scale down to few nanometers, there is limited space for planar devices to microminiaturize, which makes the process flow more difficult. Therefore, improvement of the device characteristic and how to make the process easier at the same time becomes two of the most important issues today. Some solutions have been reported like the implement of SiGe, nanowire channel structure and junctionless channel flash memory devices etc. In this thesis, we implemented the polycrystalline Ge on the nanowire channel flash memory devices, and the device electrical characteristics are investigated.
In the first experiment, the poly-Ge planar flash memory device is compare with Si planar capacitor one. The poly-Si planar devices show higher P/E speeds, better endurance and similar retention compared to poly-Ge one.
In the second experiment, the poly-Ge and poly-Si nanowire channel are implemented on the junctionless flash memory devices. Effects of poly-Ge channel on junctionless nanowire flash devices are studied. The results show that the junctionless nanowire devices perform well on the programming speed and reliability characteristics. Moreover, the erasing speeds of poly-Ge junctionless nanowire flash devices are faster compare to those of the poly-Ge planar capacitor ones.
In the third experiment, effects of channel concentration on the characteristics of junctionless poly-Ge nanowire channel flash memory devices are investigated. It is that the heavily doped junctionless poly-Ge nanowire devices show better P/E speeds and reliable characteristics, indicating that the channel concentration is still on important parameter in the Ge nanowire channel flash memory devices.
From above, the characteristics of poly-Ge flash memory device including P/E speed, endurance and retention are not good enough compare to those of the poly-Si ones. However, the electrical performance of poly-Ge flash device improved by junctionless nanowire structure shows great potential for nonvolatile memory industry in the future. It is believed that the results of poly-Ge flash memory device above are helpful to the future development memory technology.
摘要 i
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章序論 1
1.1 快閃記憶體元件 1
1.1.1 浮動閘極式快閃記憶體元件 1
1.1.2 電荷捕陷式快閃記憶體元件 2
1.2 多晶矽薄膜電晶體 4
1.3多向式閘極結構與奈米線通道式快閃記憶體元件 4
1.4高介電係數材料之介紹 6
1.5 無接面快閃記憶體元件介紹 7
1.6純鍺基板作為載子通道 8
1.7雷射退火引入鍺材料的特性 10
1.8各章摘要 11
第二章快閃記憶體元件製程與操作方法 20
2.1 平面式以及奈米線通道式快閃記憶體元件製程 20
2.1.1 傳統平面式電容元件 20
2.1.2 無接面奈米通道元件 22
2.2 快閃記憶體元件寫入與抹除方法 23
2.2.1 CHEI通道熱電子注入寫入 23
2.2.2 F-N穿隧寫入 24
2.2.3 F-N穿隧抹除 25
2.3 快閃記憶體元件可靠度特性 25
2.3.1 電荷保持力 25
2.3.2 耐久力 26
第三章 多晶鍺與多晶矽之電荷陷阱式記憶體電容元件特性研究 38
3.1研究動機與背景 38
3.2實驗流程 39
3.3實驗結果與討論 41
3.3.1 Transmission electron microscopy(TEM) 41
3.3.2 電容與閘極電壓做圖 41
3.3.3 元件寫入與抹除特性 42
3.3.4高電壓下的注入電流特性比較 43
3.3.5元件可靠度特性 44
3.4結論 45
第四章 多晶鍺及多晶矽應用於奈米通道之無接面快閃記憶體之研究 55
4.1研究動機與背景 55
4.2實驗 56
4.3結果與討論 57
4.3.1 元件汲極電流對閘極電壓作圖 57
4.3.2元件寫入與抹除特性 58
4.3.3元件可靠度特性 60
4.4結論 62
第五章 多晶鍺奈米線通道之濃度效應無接面快閃記憶體元件特性研究 72
5.1 研究動機與背景 73
5.2 實驗 73
5.3 結果與討論 75
5.3.1 元件汲極電流對閘極電壓作圖 75
5.3.2 元件寫入與抹除特性 75
5.3.3 元件可靠度特性 76
5.4 結論 78
第六章結論 88
[1] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.

[2] M. White, D. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits and Devices Magazine,, vol. 16, no. 4, Jul 2000, pp. 22 –31.

[3] M. White, Y. Yang, A. Purwar, and M. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” in Nonvolatile Memory Technology Conference, 1996., Sixth Biennial IEEE International, Jun 1996, pp. 52 –57.

[4] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings,2002. IEEE, vol. 5, 2002, pp. 5–2383 – 5–2390 vol.5.

[5] K. Kahng and S. Sze, “A floating gate and its application to memory devices,” Electron Devices, IEEE Transactions on, vol. 14, no. 9, p. 629, Sep 1967.

[6] A. Wang and W. D. Woo, “Static magnetic storage and delay line,” Journal of Applied Physics, vol. 21, no. 1, pp. 49 –54, Jan 1950.

[7] S. M. Sze and K. K. Ng, physics of semiconductor Devices, 3rdEd., Wiley Interscience, Hoboken, N.J. 2007.

[8] T. Y. Tseng and S. M. Sze, Eds, nonvolatile Memories Materials, Devices, and Applications, American Scientific Publishers, Stevenson Ranch, CA, 2012.

[9] White M. H., Adams D. A., and Bu J., “On the go with SONOS” IEEE Circuits Devices Mag., Vol. 16, No. 4, pp. 22-31, 2000.

[10] N. Yamauchi, J. J. Hajjar and R. Reif, "Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film," IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991.

[11] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A high-speed BE-SONOS NAND flash utilizing the field-enhancement effect of FinFET," in IEDM Tech. Dig. 2007, pp. 913-916.

[12] M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, et al., "Scaling of high-k dielectrics towards sub-1nm EOT," in VLSI Technology, Systems, and Applications, 2003 International Symposium on, 2003, pp. 247-250.

[13] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, "High-k metal-gate stack and its MOSFET characteristics," IEEE Electron Device Lett., vol. 25, pp. 408-410, 2004.

[14] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, "MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation," in Non-Volatile Semiconductor Memory Workshop, 2007, pp. 88-89.

[15] T. Yan-Ny, W. K. Chim, B. Jin Cho, and C. Wee-Kiong, "Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer," Electron Devices, IEEE Transactions on, vol. 51, pp. 1143-1147, 2004.

[16] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, "Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions," Sci. Adv. Mater.,vol. 3, pp. 477-482, 2011.

[17] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol.,vol. 5, pp. 225-229, 2010.

[18] Rui Zhang, Takashi Iwasaki, Noriyuki Taoka, Mitsuru Takenaka, and Shinichi Takagi, “High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation”, IEEE Transactions on, vol. 59, no. 2, pp. 335 –341, Feb 2012.

[19] L. M. Weltzer, and S. K. Banerjee, “Enhanced CHISEL Programming in Flash Memory Devices With SiGe Buried Layer,” Proc. Non-Volatile Memory Technol. Symp.,pp. 31-33, 2004.

[20] Dieter K. Schrodor, “ Semiconductor Material and Device Chracterization ”, third edition, 2006

[21] E. P. Raynes, et al., “ Method for the measurement of the K22 nematic elastic constant ”, App. Phys. Lett., Vol. 82, p. 13-15, 2003

[22] S. Saito, et al., “ First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces ”, App. Phys. Lett., Vol. 95, p. 011908, 2009

[23] C. W. Chen, J. Y. Tzeng, C. T. Chung, H. P. Chien, C. H. Chien and G. L. Luo, "High-performance germanium p- and n-MOSFETs with NiGe source/drain," IEEE Trans. Electron Devices, vol. 61, pp. 2656-2661, Aug. 2014.

[24] [ Q. C. Zhang, J. D. Huang, N. Wu, G. X. Chen, M. H. Hong, L. K. Bera and C. X. Zhu, "Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation," IEEE Electron Device Lett., vol. 27, pp. 728-730, Sep. 2006.

[25] R. Duffy and M. Shayesteh, "Germanium doping, contacts, and thin-body structures," Graphene, Ge/Iii-V, Nanowires, and Emerging Materials for Post-Cmos Applications 4, vol. 45, pp. 189-201, May 2012.

[26] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa and T. Tezuka, "Superior cut-off characteristics of Lg=40nm Wfin=7nm poly ge junctionless tri-gate FET for stacked 3D circuits integration," in VLSI Symp. Tech. Dig. 2013, pp. 94-95

[27] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: Wiley, 2007.

[28] E. Simoen, A. Satta, A. D'Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris and W. Vandervorst, "Ion-implantation issues in the formation of shallow junctions in germanium," Mater. Sci. Semicond. Process, vol. 9, pp. 634-639, Aug. 2006.

[29] J. D. Huang, N. Wu, Q. C. Zhang, C. X. Zhu, A. A. O. Tay, G. X. Chen and M. H. Hong, "Germanium n+/p junction formation by laser thermal process," Appl. Phys. Lett., vol. 87, pp. 173507-1-173507-3, Oct. 2005.

[30] Liu, T.-Y.; Lo, S.-C.; Sheu, J.-T., "Gate-All-Around Single-Crystal-Like Poly-Si Nanowire TFTs With a Steep-Subthreshold Slope," Electron Device Letters, IEEE , vol.34, no.4, pp.523,525, April 2013

[31] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot- electron injection in MOSFET’s,” Electron Devices, IEEE Transactions on, vol. 31, no. 9, pp. 1116 – 1125, Sep 1984.

[32] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 5, 2002, pp. 5–2383 – 5–2390 vol.5.

[33] M. H. White, Y. Yang, P. Ansha, and M. L. French, "A low voltage SONOS nonvolatile semiconductor memory technology," Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 20, pp. 190-195, 1997.

[34] W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, “Data retention behavior of a SONOS type two-bit storage flash memory cell,” in Electron Devices Meeting, 2001. IEDM ’01. TechnicalDigest. International, 2001, pp. 32.6.1 –32.6.4.

[35] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.

[36] Scott C. Wolfson and Fat Duen Ho, IEEE Trans. Electron Devices, vol. 57, 2010, pp. 2499–2503.
[37] Rui Zhang, et al.,TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 2, 2012

[38] Li-Jung Liu, Kuei-Shu Chang-Liao, Yi-Chuen Jian, Jen-Wei Cheng, and Tien-Ko Wang “Improvement on programming and erasing speeds for charge-trapping flash memory device with SiGe buried channel,”IEEE Electron Device Lett., vol. 33, no. 9 pp. 1264-1266, Sept. 2012
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *