帳號:guest(18.117.186.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱家進
作者(外文):Chu, Chia-Chin
論文名稱(中文):利用同步輻射光研究退火對非晶Fe/Pd多層膜轉變為序化FePd合金膜之結構變化
論文名稱(外文):Synchrotron X-ray Study of the Structural Transition from Disordered Fe/Pd Multilayers to Ordered FePd Alloy under Annealing
指導教授(中文):李志浩
指導教授(外文):Chih-Hao Lee
口試委員(中文):林滄浪
蔡佳霖
口試委員(外文):Lin, Tsang-Lang
Tsai, Jai-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011549
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:46
中文關鍵詞:濺鍍多層膜鐵鈀材料退火時間
外文關鍵詞:SputteringMultilayerFePdAnnealing time
相關次數:
  • 推薦推薦:0
  • 點閱點閱:478
  • 評分評分:*****
  • 下載下載:26
  • 收藏收藏:0
FePd合金材料在磁性儲存元件上是具有潛力的候選材料之一,本實驗以真空直流磁控濺鍍的方式沉積Fe/Pd多層膜到室溫的MgO[001]基板上,並且以同步輻射X光量測來驗證多層膜成長方式可以讓FePd-FCT晶粒的a、b軸方向沿著膜面而讓c軸垂直於膜面,實驗將濺鍍完成的Fe/Pd多層膜以700℃在真空環境退火2-10小時,利用感應偶合電漿質譜儀、能量分佈X光光譜、X光反射率、X光繞射、X光吸收對樣品的元素組成和結構進行分析以及討論。
實驗發現濺鍍完成的未退火樣品其結構是具有非晶形多孔性多層膜的結構,而隨著退火時間的增加,膜厚以及多孔性的下降表示膜密度的上升,表示Fe/Pd多層膜逐漸轉為單層的FePd合金,X光繞射圖譜在退火樣品只有發現FePd-FCT結構中沿著c軸方向的[001]和[002]繞射峰且從Rocking-curve可以看到具有優選取向,代表FePd-FCT的晶粒容易長成c軸垂直於膜面,而從X光吸收光譜模擬以及擬合結果可以得知退火後的樣品Fe原子局部結構符合FePd-FCT結構,表示其他如Fe-BCC、Pd-FCC或者FeO的含量極少。

We aimed to study the local structure change as amorphous FePd multilayer transformed into the ordered face-center-tetragonal FePd under annealing. [Fe (2 nm)/Pd (2 nm)]30 multilayer on MgO [001] substrate were prepared using a home-built magnetron sputtering system. As made samples were annealed at 2, and 10 hours at 700 ℃ in high vacuum condition. From the EXAFS analyses for the nearest scattering paths of Fe-Fe and Fe-Pd, we found that despite the inversive change in the lattice parameters c and a, the c/a ratio and cell volume of the FePd became smaller which demonstrates a more compact structure of FePd as an effect of longer annealing time.
目錄
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 序論 1
1.1 前言 1
1.2 磁性儲存原理 1
1.3 研究動機 3
第二章 實驗儀器與分析方法 4
2.1真空直流磁控濺鍍系統 4
2.2感應耦合電漿質譜分析儀 (Inductively coupled plasma mass spectrometry, ICP-MS) 5
2.3 能量散佈X光光譜儀(Energy Dispersive X-ray Spectrometer, EDX) 6
2.4 同步輻射光源 (Synchrotron Radiation) 7
2.5 X光繞射 (X-ray diffraction) 8
2.6 X光吸收光譜(X-ray absorption spectroscopy) 17
2.7 X光反射率(X-ray Reflectivity) 21
第三章 樣品製備與量測 24
3.1 多層膜濺鍍 (Multilayer sputtering) 24
3.2 感應偶合電漿質譜儀量測 25
3.3 X光繞射實驗量測 25
3.4 X光反射實驗量測 26
3.5 X光吸收光譜量測 26
3.6 能量分佈X光光譜儀量測 26
第四章 實驗結果與討論 27
4.1 成分組成分析 27
4.3 X光繞射圖 31
4.4 X光吸收光譜分析 34
第五章 總結與未來展望 42
參考文獻 43
附錄 46

表目錄

表1.2.1 具有高磁異向能的材料 2
表2.5.3.1 個別基本晶胞的消光度關係 14
表3.3.1 各別元素、合金以及氧化物在入射光能量8 keV時的繞射峰位置 25
表4.1.1 樣品元素比例表 28
表4.1.2 ICP-MS與EDX實驗比較表 28
表4.1.3 同一樣品在不同局部共三次EDX實驗 28
表4.2.1 XRR擬合參數表 30
表4.3.1 XRD繞射圖數據表 33
表4.4.2.1 樣品的Pd L3-edge X光吸收圖譜數據表 36
表4.4.3.1 EXAFS擬合數據表 41

圖目錄

圖1.2.2 (a)無序FCC(b)序化FCT結構 3
圖2.1.1.1 濺鍍示意圖,左邊黑色圈為氬離子,右邊橘色為靶材物質 4
圖2.1.1.2 濺鍍設備示意圖 5
圖2.2.1.1 感應偶合電漿質譜儀示意圖 6
圖2.3.1 入射光使內層電子激發放出特徵X光螢光示意圖 6
圖2.3.2 不同物質放射出相對應能量的特徵X光 7
圖2.4.1 同步輻射光能量範圍以及波長 8
圖2.4.2 台灣的國家同步輻射研究中心光源系統 8
圖2.5.3.1 等效照射體積示意圖 10
圖2.5.3.2 不同元素的散射因子 12
圖2.5.3.3 溫度因子隨角度增加而減少 13
圖2.5.3.4 鐵原子的散射因子 15
圖2.5.4.1 狹縫大小對於繞射峰強度以及解析度關係 16
圖2.6.4.1 X光吸收光譜可區分為主要的XANES和EXAFS兩段 18
圖2.6.4.2 目標原子經吸收X光後放出的光電子與鄰近原子相互作用[27] 19
圖2.6.5.1 X光吸收邊緣與軌域的關係圖 20
圖2.6.5.2 L-edge與分子軌域關係圖 21
圖2.7.4.1 X光與全反射角關係 24
圖4.2.1 X光反射率對退火時間變化圖 29
圖4.2.2 樣品密度、膜厚、表面粗糙度以及多孔性對樣品退火時間變化圖 30
圖4.3.1 樣品隨退火時間變化的X光繞射圖 32
圖4.3.2 (a)樣品隨退火時間變化的X光繞射圖,(b)、(c)為退火10、2小時樣品的FePd-FCT [002]繞射峰的Rocking-curve 33
圖4.4.2.1 樣品的Pd L3-edge X光吸收圖譜 36
圖4.4.2.2文獻的Pd L3-edge X光吸收圖譜 37
圖4.4.3.1 FePd-FCT結構中Fe周圍原子環境模擬圖 38
圖4.4.3.2 FEFF模擬實空間中Fe在FePd合金的散射路徑 39
圖4.4.3.3 未退火樣品的EXAFS擬合結果 40
圖4.4.3.4 退火2小時樣品的EXAFS擬合結果 40
圖4.4.3.5 退火10小時樣品的EXAFS擬合結果 41
圖4.4.4.1 Fe L3-edge X光吸收光譜 42

1. Piramanayagam, S.N., Perpendicular recording media for hard disk drives. Journal of Applied Physics, 2007. 102(1).
2. Weller, D., et al., High Ku materials approach to 100 Gbits/in^2. IEEE Transactions on Magnetics, 2000. 36(1): pp. 10-15.
3. Sato, K., B. Bian, and Y. Hirotsu, Hard magnetic properties of (001) oriented L1(0)-FePd nanoparticles formed at 773 K. Japanese Journal of Applied Physics Part 2-Letters, 2000. 39(11B): pp. L1121-L1123.
4. Corrias, A., et al., An X-ray Absorption Spectroscopy Investigation of the Formation of FeCo Alloy Nanoparticles in Al2O3 Xerogel and Aerogel Matrixes. The Journal of Physical Chemistry B, 2005. 109(29): pp. 13964-13970.
5. Clavero, C., et al., Temperature and thickness dependence at the onset of perpendicular magnetic anisotropy in FePd thin films sputtered on MgO(001). Physical Review B, 2006. 73(17): p. 10.
6. Caro, P., et al., Structure and chemical order in sputtered epitaxial FePd(0 0 1) alloys. Journal of Crystal Growth, 1998. 187(3-4): pp. 426-434.
7. Itabashi, A., et al., Surface Roughness Reduction in L1(0) Ordered FePd Alloy Thin Films Formed on MgO Single-Crystal Substrates with Different Orientations. Ieee Transactions on Magnetics, 2012. 48(11): pp. 3203-3206.
8. Ohtake, M., et al., Structure and magnetic properties of FePd-alloy epitaxial thin films grown on MgO single-crystal substrates with different orientations. Journal of Applied Physics, 2011. 109(7): p. 3.
9. Ohtake, M., et al., Structure and Magnetic Properties of CoPt, CoPd, FePt, and FePd Alloy Thin Films Formed on MgO(111) Substrates. Ieee Transactions on Magnetics, 2012. 48(11): pp. 3595-3598.
10. Endo, Y., et al., Formation of L1(0)-type ordered FePd phase in multilayers composed of Fe and Pd. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(5A): pp. 3009-3014.
11. Krupinski, M., et al., X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films. Journal of Applied Physics, 2011. 109(6): p. 7.
12. Yoshimura, S., et al., Fabrication of (001) Oriented TMR Film With Highly Ordered L1(0)-Fe(Pd,Pt) Alloy Films by Using a Very Thin Fe Underlayer. Ieee Transactions on Magnetics, 2011. 47(10): pp. 4417-4420.
13. Kumar, M.S., Temperature dependence of magnetization in Fe-Pd thin films. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2009. 162(1): pp. 59-63.
14. Gehanno, V., et al., In plane to out of plane magnetic reorientation transition in partially ordered FePd thin films. European Physical Journal B, 1999. 10(3): pp. 457-464.
15. Ohtake, M., et al., L1(0) ordered phase formation in FePt, FePd, CoPt, and CoPd alloy thin films epitaxially grown on MgO(001) single-crystal substrates. Journal of Applied Physics, 2012. 111(7): p. 3.
16. Skuza, J.R., et al., Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films With Perpendicular Magnetic Anisotropy. Ieee Transactions on Magnetics, 2010. 46(6): pp. 1886-1889.
17. Pierron-Bohnes, V., et al., Atomic migration in bulk and thin film L1(0) alloys: Experiments and molecular dynamics simulations, in Diffusion and Thermodynamics of Materials, J. Cermak and I. Stloukal, Editors. 2007, Trans Tech Publications Ltd: Stafa-Zurich. pp. 41-50.
18. Merkel, D.G., et al., Isotope-periodic multilayer method for short self-diffusion paths - a comparative neutron and synchrotron Mossbauer reflectometric study of FePd alloys, in Polarized Neutrons and Synchrotron X-Rays for Magnetism Conference 2009, T. Bruckel, W. Schweika, and J.M. Tonnerre, Editors. 2010, Iop Publishing Ltd: Bristol.
19. Ichitsubo, T., et al., Control of c-axis orientation of L10-FePd in dual-phase-equilibrium FePd/Fe thin films. Journal of Applied Physics, 2011. 109(3).
20. Laughlin, D.E., et al., Crystallographic aspects of L10 magnetic materials. Scripta Materialia, 2005. 53(4): pp. 383-388.
21. Ma, C.H., J.H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films, 2002. 418(2): pp. 73-78.
22. Dinnebier, R.E. and K. Friese, Introduction to the Mineralogical Sciences. Modern XRD Methods in Mineralogy 2003, Oxford, UK: Eolss Publishers
23. Ron, J. and R.L. Snyder, Introduction to X-Ray Powder Diffractometry. 1996: pp. 69-70.
24. Connolly, J.R., Introduction to X-Ray Powder Diffraction:Diffraction Basics. 2012.
25. Brown, P.J., et al., International Tables for Crystallography. 2006. p. 554-595.
26. Cullity, B.D., Elements of X-ray Diffraction. 2nd ed.: Addison-Weseley.
27. Newville, M., Fundamentals of XAFS. 2004.
28. Yasaka, M., X-ray thin-film measurement techniques. 2010.
29. Roldan Cuenya, B., et al., Enhanced hyperfine magnetic fields for face-centered tetragonal Fe(110) ultrathin films on vicinal Pd(110). Physical Review B, 2005. 71(6): p. 064409.
30. Meschel, S.V., J. Pavlu, and P. Nash, The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry. Journal of Alloys and Compounds, 2011. 509(17): pp. 5256-5262.
31. Kong, L.T. and B.X. Liu, Correlation of magnetic moment versus spacing distance of metastable fcc structured iron. Applied Physics Letters, 2004. 84(18): pp. 3627-3629.
32. Wei, D.H. and Y.D. Yao, Controlling microstructure and magnetization process of FePd (001) films by staged thermal modification. Applied Physics Letters, 2009. 95(17).
33. Vogel, J., et al., Structure and magnetism of Pd in Pd/Fe multilayers studied by x-ray magnetic circular dichroism at the Pd L(2,3) edges. Physical Review B, 1997. 55(6): pp. 3663-3669.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *