帳號:guest(18.118.205.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張睿珈
作者(外文):Chang, Jui-Chia
論文名稱(中文):高通量多孔陣列細胞自組裝晶片應用於乳癌病患循環癌細胞之檢測
論文名稱(外文):High Throughput Cells Array Chip Applied for Detection of Breast Cancer Patients’ Circulating Tumor Cells
指導教授(中文):曾繁根
口試委員(中文):張晃猷
陳甫州
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011546
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:71
中文關鍵詞:循環癌細胞乳癌自組裝免疫螢光
相關次數:
  • 推薦推薦:0
  • 點閱點閱:425
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
癌症為台灣十大死因之首,之所以難以治愈是因為癌細胞的轉移癌症所導致,在轉移的過程中產生「循環腫瘤細胞」(Circulating Tumor Cell, CTC)。近期研究顯示循環腫瘤細胞的多寡與病情的嚴重性和預測有正相關,因此偵測和分析循環腫瘤細胞是非常重要的研究,特別是對早期癌症轉移和接受藥物治療長期追蹤的病人。
本論文利用流體的特性,在載玻片上以SU-8做出結構,使懸浮細胞液內的細胞受液體流動的拉力而產生單層緊密排列的自組裝排列。與台中榮民總醫院合作取得乳癌第四期病患的血液檢體,經抗體螢光標定後利用重力和側向拉力的影響,在觀測區域形成二維陣列緊密排列。以螢光顯微鏡觀測循環腫瘤細胞並計算其數量再和流式細胞儀的結果對比。不同於一般實驗室細胞株的結果,具臨床意義且大量實驗後可建立有效的臨床數據。
此研究方法製作低成本且檢測快速,十分鐘內即可排列完成。不需要其他昂貴的檢測儀器,易取得的螢光顯微鏡便可進行偵測。主要成果包括:1.可實際運用於臨床上的檢測。2.螢光標定出的循環腫瘤細胞數量和流式細胞儀的結果相當。此外此檢測方法不只是用於乳癌病患,其餘癌症的轉移病患也可以此晶片檢測。
第1章 緒論 1
1.1 研究背景 1
1.2 研究目標 6
第2章 文獻回顧 7
2.1 細胞篩選方法 7
2.1.1 CellSearch系統檢測循環腫瘤細胞 7
2.1.2 免疫標定(Immunolabeling) 10
2.1.3 免疫標定應用於臨床實驗 15
2.1.4 非免疫標定(Non-immunolabeling) 21
2.2 文獻比較與目標 24
2.2.1 實驗目標 26
第3章 實驗設計 27
3.1 螢光檢測系統特色 27
3.2 實驗材料準備 28
3.2.1 細胞培養 28
3.2.2 藥品介紹 29
3.2.3 藥品製備處理 31
3.3 第一代微流道井式排列平台 33
3.3.1 第一代平台設計及原理 33
3.3.2 第一代平台製成及組裝 36
3.3.3 第一代微流道井式細胞排列結果簡介 38
3.4 第二代多孔晶片設計 41
3.4.1 第二代多孔晶片原理 43
3.4.2 兩代晶片比較 45
3.4.3 第二代自組裝陣列晶片細胞排列結果 46
3.5 全血於微流道井式細胞排列平台檢測 50
3.5.1 結論 52
3.6 轉移乳癌病患檢體於井式細胞排列平台檢測 53
3.6.1 病患檢體於自組裝細胞排列平台檢測結果 53
3.6.2 病患檢體於流式細胞儀檢測出的結果 58
3.6.3 結論 64
第4章 結論 65
4.1 第二代自組裝晶片結論 65
4.2 臨床檢體檢測結論 66
第5章 未來工作 68
1. Klein, C.A., Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 2009. 9(4): p. 302-312.
2. Faltas, B., Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells. Frontiers in Oncology, 2012. 2.
3. Mancuso, P., et al., Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood, 2001. 97(11): p. 3658-3661.
4. Wlodkowic, D. and J.M. Cooper, Tumors on chips: oncology meets microfluidics. Current opinion in chemical biology, 2010. 14(5): p. 556-567.
5. Yoon, H.J., et al., Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nature nanotechnology, 2013. 8(10): p. 735-741.
6. Ruiz, A., et al., Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials, 2008. 29(36): p. 4766-4774.
7. Krebs, M.G., et al., Evaluation and prognostic significance of circulating tumor cells in patients with non–small-cell lung cancer. Journal of Clinical Oncology, 2011. 29(12): p. 1556-1563.
8. Miller, M.C., G.V. Doyle, and L.W. Terstappen, Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. Journal of oncology, 2009. 2010.
9. Hoffman, R. and W. Britt, Flow-system measurement of cell impedance properties. Journal of Histochemistry & Cytochemistry, 1979. 27(1): p. 234-240.
10. Plouffe, B.D., M. Radisic, and S.K. Murthy, Microfluidic depletion of endothelial cells, smooth muscle cells, and fibroblasts from heterogeneous suspensions. Lab on a Chip, 2008. 8(3): p. 462-472.
11. Ligthart, S.T., et al., Circulating Tumor Cells Count and Morphological Features in Breast, Colorectal and Prostate Cancer. PLoS ONE, 2013. 8(6): p. e67148.
12. Riethdorf, S., et al., Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clinical Cancer Research, 2007. 13(3): p. 920-928.
13. Iinuma, H., et al., Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele‐specific amplification of p53 and K‐ras genes in patients with colorectal cancer. International journal of cancer, 2000. 89(4): p. 337-344.
14. Armstrong, A.J., et al., Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 2011. 9(8): p. 997-1007.
15. Gossett, D.R., et al., Label-free cell separation and sorting in microfluidic systems. Analytical and bioanalytical chemistry, 2010. 397(8): p. 3249-3267.
16. Morijiri, T., et al. Microfluidic counterflow centrifugal elutriation for cell separation using density-gradient media. in 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS). Groningen, The Netherlands. 2010.
17. Reschiglian, P., et al., Field-flow fractionation and biotechnology. TRENDS in Biotechnology, 2005. 23(9): p. 475-483.
18. Caldwell, K.D., et al., Separation of human and animal cells by steric field-flow fractionation. Cell biophysics, 1984. 6(4): p. 233-251.
19. Hosokawa, M., et al., Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells. Analytical Chemistry, 2010. 82(15): p. 6629-6635.
20. Hosokawa, M., et al., Size-Based Isolation of Circulating Tumor Cells in Lung Cancer Patients Using a Microcavity Array System. PLoS ONE, 2013. 8(6): p. e67466.
21. Rosenberg, R., et al., Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry, 2002. 49(4): p. 150-158.
22. Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235-9.
23. Allan, A.L., et al., Detection and quantification of circulating tumor cells in mouse models of human breast cancer using immunomagnetic enrichment and multiparameter flow cytometry. Cytometry A, 2005. 65(1): p. 4-14.
24. Attard, G., et al., Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res, 2009. 69(7): p. 2912-8.
25. Saliba, A.-E., et al., Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proceedings of the National Academy of Sciences, 2010. 107(33): p. 14524-14529.
26. Kang, J.H., et al., A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab on a Chip, 2012. 12(12): p. 2175-2181.
27. Revzin, A., et al., Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab on a Chip, 2005. 5(1): p. 30-37.
28. Arya, S.K., B. Lim, and A.R.A. Rahman, Enrichment, detection and clinical significance of circulating tumor cells. Lab on a Chip, 2013. 13(11): p. 1995-2027.
29. Chang, J.-C., et al. In-parallel rare cells identification by high throughput cells self-assembly. in Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on. 2013. IEEE.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *