帳號:guest(3.22.74.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊育霖
論文名稱(中文):毛細泵吸環路在太陽能熱水器的應用
論文名稱(外文):Feasibility study of the capillary pumped loop apply on the solar thermal storage system
指導教授(中文):林唯耕
口試委員(中文):白寶實
鄒蘊明
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011536
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:123
中文關鍵詞:毛細泵吸環路太陽能熱水器
相關次數:
  • 推薦推薦:0
  • 點閱點閱:269
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
毛細泵吸環路(CPL)是一個高效率的雙相移熱工具,移熱的方式主要是利用工作液體的相變化將熱能由蒸發部移至冷凝部,此裝置為自然且單向循環並不需要而外的動力裝置。
本篇論文主要是研究CPL環路系統在太陽能熱水器的應用,實驗結果顯示此CPL環路最佳填充量為70%,系統的熱轉換效率為77%。在系統傾斜實驗方式分成α-angle及β-angle;在α-angle下,當α-angle的角度愈大,系的啟動時間會愈快。效率方面,在固定加熱功率為210W下,會隨α-angle角度愈大則效率愈差。在不同加熱功率下,加熱功率為150w時,系統效率最佳角度為α30o;加熱功率為210w時,系統效率最佳角度為α0o;加熱功率為270w時,系統效率最佳角度為α30o。由不同α-angle及不同加熱總功率下,在α0o時,加熱功率為210w有最好的效率。而在β-angle下,系統效率並沒有明顯的變化趨勢,約在60%上下附近。另外,本實驗共製作四種不同蒸發部結構,分別為Wick-7pin、Wick-12pin、Wick-16pin及Wick-20pin。實驗結果發現使用Wick-12pin時系統的效率比其他三者來的佳,而啟動時間也來的最好。
A capillary pumped loop (CPL) is a high-efficiency two-phase heat transfer device in which the phase change of a working fluid is used to transport heat from evaporator to condenser through natural circulation without any external driving forces.
This study presents the possibility of the CPL apply on the solar thermal storage system. Experimental results show that the best storage efficiency is 77% in filling ratio 70%. In system tilt angle method can divided into α-angle and β-angle. In the α-angle, when the α-angle is greater the system start-up time will faster. In the efficiency, the fixed heating power 210W, with α-angle is greater of the efficiency is greater worse. the fixed heating power 150W, optimal system efficiency is α30o.the fixed heating power 210W, optimal system efficiency is α0o.the fixed heating power 270W, optimal system efficiency is α30o. By the different α-angle and different heating power, the heating power is 210w has the best efficiency in α0o. In the β-angle, system efficiency has not obvious trend, about 60%. In addition, the experiment produced different evaporation wick structure, have Wick-7pin, Wick-12pin, Wick-16pin and Wick-20pin. It was found that the efficiency of the system of Wick-12pin better than the other three structure, as well as the best start-up time.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號表 XI
第一章 緒論 13
1.1 前言 13
1.2 研究動機 16
1.3 文獻回顧 17
1.3.1 傳統熱管(Heat Pipe) 17
1.3.2 迴路式熱管(LHP) 19
1.3.3 毛細泵吸環路(CPL) 20
第二章 CPL理論分析 28
2.1 CPL工作原理 28
2.2 CPL之熱傳限制 29
2.2.1 毛細界限(Capillary Limit) 29
2.2.2 音速界限(Sonic Limit) 30
2.2.3 沸騰界限(Boiling Limit) 30
2.2.4挾帶界限(Entrainment Limit) 31
2.2.5 非凝結氣體(Non-Condensable Gas , NCG)的影響 31
2.3 CPL理論基礎分析 32
第三章 CPL環路元件設計 35
3.1 工作流體的選擇 35
3.2 蒸發部之設計 37
3.3 毛細結構之設計 38
3.4 冷凝部之設計 40
3.5 循環管路之設計 40
第四章 實驗設備與方法 48
4.1 實驗前準備工作 4.1.1 真空系統 (Vacuum system) 48
4.1.2 填充工作流體 48
4.2 CPL環路測試設備 49
4.3 CPL環路性能測試 52
4.3.1 測試平台建立 52
4.3.2 性能測試步驟 53
4.4 實驗參數 54
第五章 實驗結果與討論 65
5.1 填充量V+測試 67
5.1.1 填充量V+=55%與填充量V+=65%在210w等功率加熱之情形 68
5.1.2 填充量V+=70%、填充量V+=75%、填充量V+=85%在210w等功率加熱之情形 68
5.1.3 CPL之最佳填充量 70
5.2 熱分享測試 75
5.2.1 蒸發器Evaporator(1)加熱之熱分享實驗 75
5.2.2 蒸發器Evaporator(2)加熱 75
5.2.3 蒸發器Evaporator(3)加熱 76
5.2.4 熱分享測試總結 76
5.3 等功率加熱測試實驗 80
5.3.1 加熱總功率90w之等功率加熱實驗 80
5.3.2 加熱總功率150w之等功率加熱實驗 81
5.3.3 加熱總功率210w及270w之等功率加熱實驗 81
5.3.4 加熱總功率300w之等功率加熱實驗 82
5.3.5 等功率加熱實驗總結 83
5.4 系統傾斜角度之測試 89
5.4.1 不同α-angle在相同填充率及相同加熱功率下之測試 89
5.4.2 α-angle在不同加熱總功率之測試 91
5.4.3 α-angle在不同填充量之測試 93
5.4.4 不同β-angle在不同填充量之測試 94
5.4.5系統傾角之角度總結 96
5.5 蒸發部溝槽結構之測試 122
5.5.1 溝槽數結構12pin、16pin及20pin 122
5.5.2 蒸發部溝槽結構總結 123
5.6 系統啟動情形總比較 127
第六章 結論與建議 130
6.1 結論 130
6.2 建議 131
參考文獻 133
[1] 工研院能資所,太陽能熱水系統專業技術人員講習,民國90年。
[2] 經濟部能源局,再生能源熱利用獎勵補助辦法,太陽能熱水器補助辦法。
[3] W. K. Lin, B. J. Weng, ”Design of the Flow Visualization within a Capillary Pumped Loop”, Nuclear Science Journal, Chung Hua Nuclear Society, R.O.C. Vol. 30, Nov.4, Aug. 1993
[4] W. K. Lin, S. W. Chen, ”The Heat Removed Device Study for Lap Top Computer by CPL”,Electronic Techniques, Vol. 185,pp.182-189. Aug 2001, (EI) (NSC-90-2623-7-007-031-)
[5] H. W. Lin, W. K. Lin, ”Thermal Analysis of Small-Scale Capillary Pumped Loop imitates Groove Heat Pipe Inner Structure” ,Journal of Aeronautics, Astronautics and Aviation, Series B, Vol.38, No.2, pp.89-96, 2006 ,(EI)( NSC-94-2212-E-007-150-)
[6] John Archibald, “BUILDING INTEGRATED SOLAR THERMAL ROOFING SYSTEMS, HISTORY, CURRENT STATUS, AND FUTURE PROMISE”, American Solar Roofing Company, 8703 Chippendale Court, Annandale, Va. 22003
Tim Selke (TSelke) , “Building integrated Solar Thermal Systems in an Urban Scale”, AIT Austrian Institute of Technology Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H.
[7] Helena Gajbert , “Solar thermal energy systems for building integration”, Division of Energy and Building Design Department of Architecture and Built Environment Lund University, Faculty of Engineering LTH, 2008, Report EBD-T--08/10
[8] F.J. Stenger, NASA TM X-1310, 1966
[9] Gaugler, R. S., US Patent Application. Dec. 12, 1942. Published US Patent NO.2350348,June 1944.
[10] Cotter, T. P., “Theoretical of Heat Pipes”, Los Alamos Science Lab. Roport NO. LA-3246-MS, 1965.
[11] Levy, E. K., “Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressure”, J. Engineering for Industry, Vol. 90, pp.547-552. 1968.
[12] Tien, C. L. and Sun, K. H.,”Minimun Meniscus Radius of Heat Pipes with a Wicking Material ”, Int. J. Heat Mass Transfer 14, pp.1853-1855, 1970.
[13] Busse, C. A., “Pressure Drop in the Vapor Phase of Long Heat Pipe”, Proceedings of International Thermionic Conversion Specialist Conference, IEEE, New York. 1973.
[14] Asselman, G. A. and Green, D. B., “Heat Pipes”, Phillips Technical Review, Vol. 16, pp. 169-186, 1973.
[15] Yoshida, K., “Flat Plate Heat Pipe for Commercial Uses”, Proc. 5 Int. Heat Pipe Conf., Tsukuba, Japan, 1984.
[16] Xie, H., Mostafa, A., Wendy, L., and Kevin, H., “Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-Notebooks”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 19, No. 1, pp. 54-65. March 1996.
[17] Mochizuki, M., “Hinged Heat Pipes for Cooling Notebook PCs”, IEEE, pp. 64-72, 1997.
[18] Maidanik, Y. F., “Design and Investigation of Methods of Regulation of Loop Heat Pipes for Terrestrial and Space Applications”, Institute of Thermophysics, Ural Division of the Russian Academy of Sciences, SAE Technical Paper 941407, 1994.
[19] Nikitkin, N. N., Bienert, W. B., and Goncharov, K. A., “Non Condensable Gases and Loop Heat Pipe Operation”, Dynatherm Corp and TAIS Ltd, SAE Technical Paper No. 981584, 1998.
[20] Maidanik, Y. F. and Pastukhov, V. G., “Loop Pipe-Recent Developments, Test Results and Applications”, Institute of Thermophysics, Ural Division of Russian Academy of Sciences, SAE Technical Paper 1999-01-2530, 1999.
[21] Muraoka, I., Ramos, F. M., and Vlassov , V. V., “Analysis of the Operational Characteristics and Limits of Loop Heat Pipes with Porous Element in the Condenser”, International Journal of Heat and Transfer, Vol. 44, pp. 2287-2297, 2001.
[22] 張文華,”迴路式熱管參數影響之研究”,國立台灣大學機械工程學系研究所碩士論文,2003年6月。
[23] Stenger, F. J., “Experimental Feasibility Study of Water-Filled Capillary Pumped Heat Transfer for Loops”, NASA TM-X-1310, NASA Lewis Research Center, Cleveland, Ohio, 1966.
[24] Kroliczek, E. J., “Capillary Pumped Looped Heat Pipe Development Status Report”, Report to NASA/GSFC, OAO Corporation, 1982.
[25] Ku, J. Krolicezk, E. J., Taylor, W. J., and Mcintosh, R., “Function and Performance Tests of Two Capillary Pumped Loops Engineering Models”, AIAA Paper No. 86-1248, 1986.
[26] Ku, J. M. and Kroliczek, E. J., “A High Power Spacecraft Thermal Management System”, AIAA Paper No. 88-2702, 1988.
[27] Wulz, H. and Embacher, E., “Capillary Pumped Loops for Space Application Experimental and Theoretical Studies on the Performance of Capillary Evaporator Designs”, AIAA Paper 90-1739, 1990.
[28] Cullimore, B., “Capillary Pumped Loop Application Guide”, SAE Technical Paper No. 932165, 1993.
[29] Dickey, J. T. and Peterson, G. P., “Experimental and Analytical Investigation of a Capillary Pumper Loop”, Journal of Thermophysics and Heat Transfer, Vol. 8, No. 3, 1994.
[30] Gernetr, N. J., “Fine Pore Loop Heat Pipe Wick Structure Development”, SAE Paper 961319, 1996.
[31] 莊文瑞,”毛細泵吸環路應用於電子散熱之可行性研究”,國立清華大學核子工程與工程物理研究所碩士論文,1997年6月。
[32] Gerhart, C., “Initial Characterization Results of Metal Wick Capillary Pumps”, Space Technology and Applications International Forum, pp. 938-942, 1998.
[33] Nikitkin, M. and Cullimore, B., “CPL and LHP Technologies:What Are the Difference, What Are the Similarities? ”, SAE Paper 981587, 1998.
[34] Kaya, T., “Investigation of Low Power Start-up Characteristics of a Loop Heat Pipe”, NASA GSFC, Space Technology and Applications International Forum, pp. 799-804, 1999.
[35] Zhao, T. S. and Liao, Q., “Evaporative Heat Transfer in a Capillary Heated by a Grooved Block”, Journal of Thermpphysics and Heat Transfer, Vol. 13, pp. 126-133. 1999.
[36] 陳品志,”毛細式泵吸環路之實驗研究”,國立清華大學工程與系統科學系研究所博士論文,2001年7月。
[37] 林文正,”微小化毛細泵吸環路應用於1U伺服器之CPU冷凝設計開發”,國立清華大學工程與系統科學系研究所碩士論文,2003年6月。
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *