帳號:guest(3.139.87.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李東原
作者(外文):LEE, Tung-Yuan
論文名稱(中文):聚二甲基矽氧烷複合奈微結構之合成與可撓曲微型質子交換膜燃料電池之應用
論文名稱(外文):A Flexible Micro-PEMFC Electrodes of composite Polydimethylsiloxane(PDMS) Nano/Microstructures
指導教授(中文):王本誠
曾繁根
指導教授(外文):Wang, Pen-Cheng
Tseng, Fan-Gang
口試委員(中文):王本誠
曾繁根
薛康琳
黃鈺軫
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011531
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:可撓曲燃料電池
外文關鍵詞:FlexibleFuelCell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:229
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究提出一種新型聚二甲基矽氧烷複合電極材料應用於可撓曲微型質子交換膜燃料電池,以聚二甲基矽氧烷做為基材,藉由微機電技術製作具有微流道結構之電極,透過有機矽烷方法在聚二甲基矽氧烷上修飾上特定官能基,並成長導電層金或導電高分子聚苯胺,分析其導電材料與PDMS基材間的附著力、表面形貌以及可撓曲電性測試,最後在沉積白金觸媒,進行燃料電池相關測試與分析。
  有機矽烷修飾方法製作之PDMS金電極在附著力與可撓曲電性測試上皆具有非常突出的表現,附著力為ISO等級0,撓曲曲率達2/cm時電阻抗僅上升約8倍。燃料電池部分,半電池測試中,在撓曲曲率達3.333/cm時效能僅下降約6.6%;在全電池測試中,測得最大功率密度在0.321V時為2.55mW/cm2。
In this paper, a novel design of PDMS-based bendable electrodes with microstructures is proposed for flexible proton exchange membrane fuel cells (PEMFCs). The design of the bendable electrodes incorporates micro-structured PDMS-film to increase the reaction area and fuel pass-way, conducting layer Au with strong conjugation to the PDMS-microstructures for electron conduction, and Pt catalyst for fuel reaction.
The electrodes perform ISO class 0 in adhesion test and only increase 6.6% resistance under 2/cm bending curvature. The half-cell test yields a performance of 12.7~13.8mA/cm-2 at 0.6V under serious bending conditions and also 2.55mW/cm2 at 0.321V in fuel cell test.

摘要……………………………………………………………….………i
Abstract……………………………………………….………………….ii
誌謝………………………………………………………..…………….iii
目錄………………………………………………………...……………iv
圖目錄…………………………………………………………………..vii
表目錄……………………………………………………………..........xii
一、 緒論………………………………………………………..........1
1.1前言…………………………………………………………...….1
1.2燃料電池之簡介…………………………………………………1
1.2.1鹼性燃料電池………………………………………………2
1.2.2磷酸燃料電池………………………………………………3
1.2.3融熔碳酸鹽燃料電池………………………………………3
1.2.4固態氧化物燃料電池………………………………………4
1.2.5質子交換膜燃料電池………………………………………4
1.3可撓曲之微型質子交換膜燃料電池研究動機………………….5
二、 文獻回顧………………………………………………………..6
2.1可撓曲燃料電池…………………………………………………6
2.2有機矽烷修飾方法……………………………………………….9
2.3聚苯胺…………………………………………………………...11
2.3.1聚苯胺之簡介……………………………………………..11
2.3.2聚苯胺之摻雜……………………………………………..12
2.3.3聚苯胺之化學合成……………………………………….15
2.3.4聚苯胺作為白金觸媒載體………………………………..16
2.4電池組裝技術…………………………………………………..17
2.5研究方法………………………………………………………..20
三、 聚二甲基矽氧烷複合奈微結構電極之合成與可撓曲微型質子交換膜燃料電池之應用…………………………………………...21
3.1燃料電池基本設計與實驗架構………………………………..21
3.2有機矽烷方法製作PDMS-based平面電極(A)………………..22
3.2.1 PDMS-based電極製作製作原理…………………………..22
3.2.2 PDMS-based電極測試原理………………………………..22
3.2.2.1吸附性測試原理………………………………………..23
3.2.2.2可撓曲電性測試原理…………………………………..24
3.2.3 PDMS-based電極製作實驗藥品與儀器………………….25
3.2.3.1 PDMS-based電極製作實驗藥品……………………...25
3.2.3.2 PDMS-based電極製作實驗儀器………………………26
3.2.4 PDMS-based電極製做步驟流程………………………….29
3.3聚二甲基矽氧烷微結構電極燃料電池製作與測試(B)…….…32
3.3.1聚二甲基矽氧烷微結構電極製作原理……………………32
3.3.2聚二甲基矽氧烷微結構電極燃料電池測試原理…………33
3.3.2.1聚二甲基矽氧烷微結構電極燃料電池測試原理……..33
3.3.2.2聚二甲基矽氧烷微結構電極燃料電池全電池測試原理…………………………………………………….….34
3.3.3實聚二甲基矽氧烷微結構電極實驗藥品與儀器…………36
3.3.3.1聚二甲基矽氧烷微結構電極實驗藥品………………..36
3.3.3.2聚二甲基矽氧烷微結構電極實驗儀器………………..36
3.3.4聚二甲基矽氧烷微結構電極製作步驟流程………………38
四、 結果與討論……………………………………………………41
4.1 PDMS-based平面電極結果與討論……………………………41
4.1.1不同導電材料於PDMS上製作導電薄膜之結果與比較…41
4.1.2不同黏著材料對於Au在PDMS上製作導電薄膜之結果與比較…………………………………………..……………..42
4.1.2.1吸附測試結果………………………………………….42
4.1.2.2可撓曲電性測試結果………………………………….43
4.1.3 Au/MPTMS/PDMS表面形貌………………………….…..51
4.2聚二甲基矽氧烷微結構電極燃料電池測試結果與討論……..52
4.2.1表面形貌分析結果…………………………………………52
4.2.2可撓曲半電池電化學分析結果……………………………53
4.2.3全電池封裝與測試…………………………………………55
4.2.3.1全電池組裝……………………………………………..55
4.2.3.2全電池可撓曲測試架構……………………………….57
4.2.3.3傳統全電池測試架構…………………………………..59
4.3結論……………………………………………………………..62
五、 未來展望……………………………………………………....63
六、 參考文獻………………………………………………………64
[1] D. Linden, Thomas B. Reddy, “Handbook of Batteries,” 3rd edition, MaGraw-Hill, 2002.
[2] R. Padbury, X.W. Zhang, “Lithium–oxygen batteries—Limiting factors that affect performance,” Journal of Power Sources, 196, 4436-4444, 2011.
[3] R. C. Bhardwaj et al., “Curved battery cells for portable electronic devices,” US Patent 2013/0108907 A1, May 2, 2013.
[4] S. C. Kelley, G. A. Deluga, W. H. Smyrl, “Miniature fuel cells fabricated on silicon substrates,” AlChE Journal, 48, 1071-1082, 2002.
[5] K. Shah, W. C. Shin, and R. S. Basser, “Novel Microfabrication Approaches for Directly Patterning PEM Fuel Cell Membranes,” Journal of Power Sources, 123, 172-181, 2003.
[6] J. Yeom et al, G.Z. Mozsgai, B.R. Flachsbart, E.R. Choban, A. Asthana, M.A. Shannon, P.J.A. Kenis, “Microfabrication and characterization of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid,” Sensors and Actuators B, 107, 882–891, 2005.
[7] J. Yeom, R. S. Jayashree, C. Rastogi, M. A. Shannon, and P. J. Kenis, “Passive direct formic acid microfabricated fuel cells,” Journal of Power Sources, 160, 1058–1064, 2006.
[8] Z. Xiao, G. Yan, C. Feng, Philip C. H. Chan, I.-Ming Hsing, “A silicon-based fuel cell micro power system using a microfabrication technique,” Journal of Micromechanics and Microengineering, 16, 2014–2020, 2006.
[9] Y. Zhang, J. Lu, S. Shimano, H. Zhou, R. Maeda, “Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology,” Electrochemistry Communications, 9, 1365–1368, 2007.
[10] Y. Zhang, J. Lu, H. Zhou, T. Itoh, R. Maeda, “Application of Nanoimprint Technology in MEMS-Based Micro Direct-Methanol Fuel Cell (u -DMFC),” Journal of Microelectromechanical Systems, 17, 1020-1028, 2008.
[11] M. Shen, S. Walter, M.A.M. Gijs, “Monolithic micro-direct methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip,” Journal of Power Sources, 193, 761–765, 2009.
[12] T. Ito, K. Kimura, M. Kunimatsu, “Characteristics of micro DMFCs array fabricated on flexible polymeric substrate,” J. Electrochem. Commun., 8, 973-976, 2006.
[13] S. Tominaka, H. Nishizeko, J. Mizuno, and T. Osaka, “Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate,” J. Energy & Environment Sci., 2, 1074-1077, 2009.
[14] I. Chang, M. H. Lee, J.-H. Lee, Y.-S. Kim, and S. W. Cha, “Air-breathing Flexible Polydimethylsiloxane (PDMS)-based Fuel Cell,” Int. J. Precision Eng. & Manufacturing, 14, 501-504, 2013.
[15] P.C .Wang, L.H. Liu, D. A. Mengistie, K.H. Li, B.J. Wen, T.S. Liu, C.W. Chu, “Transparent electrodes based on conducting polymers for display
Applications,” J. Displays, 34, 301-314, 2013.
[18] A. F. Diaz, J. Crowley, J. Bargon, G.P. Gardini, J.B. Torrance, “Electrooxidation of aromatic oligomers and conducting polymers,” J. Electroanal. Chem., 121, 355-161, 1981.
[19] R. De Surville, M. Jozefowicz, L.T. Yu, J. Pepichon, R. Buvet, “Electrochemical chains using protolytic organic semiconductors,” J. Electrochim. Acta., 13, 1451-1458, 1968.
[20] D. M. Mohilner, DM Mohilner, RN Adams, WJ Argersinger, “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode,” J. Am. Chem. Soc., 84, 3618-3622, 1962.
[21] J. Langer, “Unusual properties of the aniline black: Does the superconductivity exist at room temperature?,” Solid State Commun., 26, 839-844, 1978.
[22] A. G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, L. D Nanaxakkara, S. W. Wu & S. I. Yaniger,“Polyaniline”: Interconversion of Metallic and Insulating FormsMol. Cryst. Liq. Cryst., 121, 173, 1985.
[23] Y. Wei, C. Yang, G. Wei, G Feng, “A new synthesis of aniline oligomers with three to eight amine units,” Synth. Met. 84, 289-291, 1997.
[24] Y. Cao, P. Smith, A. J. Heeger, “Counter-ion induced processibility of conducting polyaniline,” Synth. Met., 57, 3514, 1993.
[25] S. P. Armes, J. F. Miller, “Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate,” Synth. Met., 22, 385, 1988
[26] F. S. Wang, J. Tang, L. Wang, H. Zhang, and Z. Mo, “Study on the Crystallinity of Polyaniline,” Mol. Cryst. Liq. Cryst., 160, 175-184, 1988
[27] J. Tang, X. Jing, B. Wang, F. Wang, “Infrared spectra of soluble polyaniline ,” Synth. Met., 24, 231-238, 1988.
[28] A. G. MacDiarmid, A. J. Epstein, “Secondary doping in polyaniline,” Synth. Met., 69, 85-92, 1995.
[29] L. Yang, W. Qiu, Q. Liu, “Polyaniline cathode material for lithium batteries,” Solid State Ion., 86, 819, 1996.
[30] Z. Chen, L. Xu, W. Li, M. Waje, and Y. Yan, “Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells,” J. Nanotech., 17, 5254, 2006.
[31] Y. F. Huang, C.W. Lin, C.S. Chang, M.J. Ho,” Alternative platinum electrocatalyst supporter with micro/nanostructured
polyaniline for direct methanol fuel cell applications,” J. Electrochimica Acta., 56, 5679-5685, 2011.
[32] Z. Guo, A. Faghri, “Development of planar air breathing direct methanol fuel cell stacks,” Journal of Power Sources, 160, 1183–1194, 2006.
[33] W.R. Chang, J. J. Hwang, F. B. Weng, and S. H. Chan, “Effect of clamping pressure on the performance of a PEM fuel cell,” Journal of Power Sources, 166, 149, 2007.
[34] 全華精密, 網站www.chuanhua.com.tw.
[35] B. J. Wen, T. S. Liu, “Flexible-characteristics inspection system for flexible substratesby using image feedback control,” Journal of Displays, 32, 396-307, 2011.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *