|
1. International Atomic Energy Agency, Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems, IAEA-TECDOC- 1379, 2003. 2. Nuclear Energy Agency, “Assessment of Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Problems”, NEA/CSNI/R(2007)13, 2008. 3. Nuclear Energy Agency, “Best Practice Guidelines for the use of CFD in nuclear Reactor Safety Applications”, NEA/CSNI/R(2007)5, 2007. 4. M.V. Holloway, H.L. McClusky, D.E. Beasley, “The Effect of Support Grid Features on Local, Single-Phase Heat Transfer Measurements in Rod Bundles”, Journal of Heat Transfer, Volume 126, 2004, pp.43-53. 5. United States Nuclear Regulatory Commission, “Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications- Final Report”, NUREG-2152(2013), 2013. 6. L.F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam”, Philosophical Transactions of the Royal Society of London. Series A, Volume 210, 1911, pp.307-357. 7. P.J. Roache, “Quantification of Uncertainty in Computational Fluid Dynamics”, Annual Review of Fluid Mechanics, Volume 29, 1997, pp.123-160. 8. F. Stern, R.V. Wilson, H.W. Coleman, E.G. Paterson, “Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures”, Journal of Fluids Engineering, Volume 123, 2001, pp.793-802. 9. The American Society of Mechanical Engineers, “Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer”, ASME V&V 20-2009, 2009. 10. P. Spalart, S. Allmaras, “A One-equation Turbulence Model for Aerodynamic Flows”, Technical Report AIAA-92-0439,1992. 11. B. E. Launder, D. B. Spalding, “The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering”, Volume 3, Issue 2, 1974, pp.269-289. 12. V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, “Development of Turbulence Models for Shear Flows by a Double Expansion Technique”, Physics of Fluids A, Volume 4, No. 7, 1992, pp.1510-1520. 13. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu., “A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows”, Computers Fluids, Volume 24, No. 3, 1995, pp.227-238. 14. D.C. Wilcox, “Reassessment of the Scale Determining Equation for Advanced Turbulence Models”, AIAA Journal, Volume 26, No. 11, 1988, pp.1299-1310. 15. F.R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Volume 32, No. 8, 1994, pp.1598-1605. 16. B. E. Launder, G. J. Reece, W. Rodi, "Progress in the Development of a Reynolds-Stress Turbulent Closure", Journal of Fluid Mechanics, Volume 68, No. 3, 1975, pp.537-566. 17. H. Kato, S. Obayashi, “Approach for uncertainty of turbulence modeling based on data assimilation technique”, Computers & Fluids, Volume 85, 2013, pp.2-7. 18. S.H. Cheung, T.A. Oliver, E.E. Prudencio, S. Prudhomme, R.D. Moser, “Bayesian uncertainty analysis with applications to turbulence modeling”, Reliability Engineering and System Safety, Volume 96, 2011, pp.1137-1149. 19. W. Edeling, P. Cinnella, R. Dwight, H. Bijl, “Bayesian estimates of parameter variability in the k–ε turbulence model”, Journal of Computational Physics, Volume 258, 2014, pp.73-94. 20. Y.S. Tseng, H.H. Fu, T.C. Hung, B.S. Pei, “An optimal parametric design to improve chip cooling”, Applied Thermal Engineering, Volume 27, 2007, pp. 1823-1831. 21. E. Baglietto, H. Ninokata, “A turbulence model study for simulating flow inside tight lattice rod bundles”, Nuclear Engineering and Design, Volume 235, 2005, pp.773–784.
|