帳號:guest(3.15.237.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳璽安
作者(外文):Chen, Hsi-An
論文名稱(中文):基板偏壓對磁控濺鍍備製氮化鈦鋯薄膜結構與性質之影響
論文名稱(外文):Effect of Bias on the Structure and Properties of TiZrN Thin Films Deposited by Unbalanced Magnetron Sputtering
指導教授(中文):喻冀平
黃嘉宏
指導教授(外文):Yu, Ge-Ping
Huang, Jia-Hong
口試委員(中文):李志偉
薛富盛
口試委員(外文):Jyh-Wei Lee
F.S.Shieu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011519
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:86
中文關鍵詞:氮化鈦鋯基板偏壓硬度殘餘應力
外文關鍵詞:TiZrNSubstrate biasHardnessResidual stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:228
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
研究目的為探討基板偏壓對於氮化鈦鋯薄膜結構與性質之影響,本實驗是利用非平衡磁控濺鍍法將奈米晶氮化鈦鋯 (TiZrN) 薄膜鍍著於(100)矽晶片上,並且應用不同的基板偏壓,範圍由-35V至-150V,實驗結果指出,所有的試片都存在高強度的(111)織構。在本研究中,我們發現當基板偏壓超過-35V以上,氮化鈦鋯薄膜的性質會顯著的改善,在-40V至-120V之間,氮化鈦鋯薄膜保持著優良的性質,包含:高硬度、高輝度、低電組及平坦的表面。在此區間,氮化鈦鋯薄膜的平均硬度為35.5 GPa,平均電阻為33.5μΩ-cm、輝度達到80以上而且薄膜粗糙度介於0.5nm至0.6nm之間。在大範圍的應用偏壓中,氮化鈦鋯薄膜保持優良的性質,這指出製程參數範圍非常廣。然而當基板偏壓達到-150V,有結構損傷以及薄膜剝落的現象發生,透過拉塞福背向散射分析儀(RBS)的結果與掃描式電子顯微鏡(SEM)也可以驗證此結構損傷現象。對於保護鍍附層,必須要有低的殘餘應力來防止薄膜剝落,藉由控制基板偏壓可以將殘餘應力控制在較低的值。在此研究中隨著基板偏壓由-65V下降至-35V,殘餘應力逐漸下降,在低偏壓-40V和-45V時,氮化鈦鋯薄膜可以同時獲得高硬度以及較低的殘餘應力,硬度與殘餘應力分別為33.4~34.5GPa和-2.7~-3.7GPa。
The objective is to investigate the substrate bias effect on the structure and properties of the TiZrN thin films. The TiZrN thin films were deposited by DC unbalanced magnetron sputtering system (UBMS) with dual guns (Ti,Zr) targets onto Si (100) substrates at different substrate bias ranging from -35V to -150V. Experimental results indicated that all the specimens have strong (111) texture in XRD patterns. In this study, we discovered a transition bias of -35 V, above which a significant improvement of properties was found, including high hardness, excellent brilliance, low resistivity and fine surface morphology. Within the bias range of -40 to -120 V, the hardness of TiZrN films is around 35.5 GPa, the resistivity is about 33.5μΩ-cm, and the brilliance is larger than 80. The roughness is between 0.5 nm and 0.6 nm. The TiZrN films maintain excellent properties through a large range of applying bias, indicating that the process window is considerable wide. However, structure damage and thin film delamination were found when substrate bias reached -150V. The RBS result and SEM image further support the structure damage at -150 V. For protective coatings, low residual stress is required to avoid delamination. By adjusting substrate bias, residual stress can be controlled to lower value. In this study, the residual stress of TiZrN films gradually decreases with decreasing the substrate bias ranging from -65V to -35V. The TiZrN thin films with high hardness, lower residual stress could be obtained simultaneously at low substrate bias of -40V and -45V, the hardness and residual stress are 33.4~34.5GPa and -2.7 ~-3.7GPa, respectively.
Contents
摘要 i
Abstract ii
致謝 iii
Contents v
List of Figures viii
List of Tables……………………………………………………………............................................. v
Chapter 1 Introduction 1
Chapter 2 Literature Review 2
2.1 Unbalance magnetron sputtering system (UBMS) 2
2.2 Characteristics of transition metal nitride (TiN and ZrN) 3
2.3 Characteristics of TiZrN 6
2.4 Effect of substrate bias on thin films 9
2.5 Low substrate bias voltage applied in hard coating 12
Chapter 3 Experimental Details 13
3.1 Experimental Apparatus and Specimen Preparation 13
3.2 Characterization Methods 17
3.2.1X-ray photoelectron spectroscopy (XPS) 17
3.2.2 X-ray diffraction (XRD) 17
3.2.3 Glancing Incidence X-ray diffraction (GIXRD) 18
3.2.4 Field emission gun scanning electron microscopy (FEG-SEM) 19
3.2.5 Atomic Force Microscopy (AFM) 19
3.2.6 Rutherford backscattering spectroscopy (RBS) 19
3.3 Characterization Methods for Properties of TiZrN films 20
3.3.1Resistivity (Four-point probe) 20
3.3.2Hardness (Nanoidentation) 22
3.3.3 Laser Curvature Method (Residual Stress) 22
3.3.4 Coloration 24
Chapter 4 Results 25
4.1 Structure 25
4.1.1 Chemical Compositions (XPS) 25
4.1.2 N/(Ti+Zr) ratio and Packing Factor (RBS) 25
4.1.3 XRD 30
4.1.4 GIXRD 35
4.1.5 SEM 38
4.1.6 AFM 43
4.2 Properties 44
4.2.1 Hardness 44
4.2.2 Residual stress 45
4.2.2 Resistivity 46
4.2.2 Coloration 47
Chapter 5 Discussion 49
5.1 Nanostructure of TiZrN 49
5.2 Properties of TiZrN 52
5.2.1 Residual stress 52
5.2.2 Hardness 53
5.2.4 Coloration 58
5.3 Summary of effect bias 60
Chapter 6 Conclusions 61
References 62
Appendix A The XPS deconvolution spectra 70
Appendix B The GIXRD patterns 79
Appendix C AFM-3D images 83
Appendix D RBS results 85

List of Figures
Fig. 2.1 The structure diagram of TiN and ZrN 4
Fig. 2.2 The binary phase diagram of Ti-N system 5
Fig. 2.3 The binary phase diagram of Zr-N system 5
Fig. 2.4 Result of the XRD pattern for the TiZrN(200), TiN(200) and ZrN(200). 7
Fig. 2.5 The XRD patterns of TiZrN films with different gun power of Zr target 8
Fig. 2.6 The XRD patterns for all samples with the nitrogen flow rate ranging from 0 to 2.5 sccm 8
Fig. 2.7 The surface structures of TiN films with different substrate bias. 10
Fig. 2.8 Schematic diagram of <220> channeling direction 11
Fig. 2.9 Potentiodynamic polarization curves of TiN coated and uncoated samples were carried out in 3.5% NaCl 11
Fig.2.10 The variation of residual stress and hardness of TiAlN films with different bias 12
Fig. 3.1 Schematic diagram of the UBMS system 14
Fig. 3.2 The experimental flow chart 16
Fig. 3.3 Schematic diagram of four-point probe. 21
Fig. 3.4 Schematic diagram of the laser curvature system. 23
Fig. 3.5 Schematic diagram of the L*a*b* color space 24
Fig. 4.1 The XPS deconvolution spectra of (a) Ti-2p peak (b) Zr-3d peak of B75 sample 26
Fig. 4.2The XPS deconvolution spectra of (c) N-1s peak (d) O-1s peak of B75 sample 27
Fig. 4.3 The RBS spectrums of TiZrN films (a) B35 (b) B75 28
Fig. 4.4 The packing factor of the TiZrN films with respect to substrate negative bias. 29
Fig. 4.5 The X-ray diffraction patterns of samples B35~B150 33
Fig. 4.6 The grain size of the TiZrN films with respect to substrate negative bias. 34
Fig. 4.7 The FWHM with respect to substrate negative bias. 34
Fig. 4.8 The GIXRD patterns of (a) B35 (b) B75 (c) B150 specimens 37
Fig. 4.9 The cross-sectional images of the TiZrN films for all samples 40
Fig. 4.10 The SEM surface image of TiZrN films deposition with different substrate bias:B35, B40, B85 and B150 41
Fig. 4.11 The SEM surface image of B150 specimen:partial region delamination 42
Fig. 4.12 The deposition rate of TiZrN films with respect to substrate negative bias. 42
Fig. 4.13 The 3D surface images of B35, B40, B85 and B150 by AFM 43
Fig. 4.14 Hardness of TiZrN films with respect to substrate negative bias. 44
Fig. 4.15 The residual stress of TiZrN films with respect to substrate negative bias. 45
Fig. 4.16 The electrical resistivity of TiZrN films with respect to substrate negative bias 46
Fig. 4.17 The variation of color with different substrate bias 48
Fig. 5.1 The residual stress and hardness with respect to substrate bias 53
Fig. 5.2 The variation surface area of contact with different grain size. 56
Fig. 5.3 The resistivity of the TiZrN films with respect to packing factor. 58
Fig. 5.4 The relationship between incident light and roughness of thin films 59
Fig. A.1 The XPS deconvolution spectra of B35 specimen 70
Fig. A.2 The XPS deconvolution spectra of B40 specimen 71
Fig. A.3 The XPS deconvolution spectra of B45 specimen 72
Fig. A.4 The XPS deconvolution spectra of B55 specimen 73
Fig. A.5 The XPS deconvolution spectra of B65 specimen 74
Fig. A.6 The XPS deconvolution spectra of B85 specimen 75
Fig. A.7 The XPS deconvolution spectra of B95 specimen 76
Fig. A.8 The XPS deconvolution spectra of B120 specimen 77
Fig. A.9 The XPS deconvolution spectra of B150 specimen 78
Fig. B.1 The GIXRD patterns of B35, B40 and B45 samples 79
Fig. B.2 The GIXRD patterns of B55-B75 samples 80
Fig. B.4 The GIXRD patterns of B85-B120 samples 81
Fig. B.5The GIXRD patterns of B150 sample 82
Fig. C.1 The AFM 3D images of sample B35-B65 83
Fig. C.2 The AFM 3D images of sample B75-B150 84
Fig. D.1 The RBS results of B35-B65 samples 85
Fig. D.2 The RBS results of B75-B150 samples 86

List of Tables
Table 2.1 Summary of characteristics of TiN and ZrN 3
Table 3.1 The deposition condition of TiZrN with various substrate bias 15
Table 3.2 The deposition condition of TiZrN thin films 15
Table 3.3 The correction factor at different ds 21
Table 4.1 Summary of the experimental results. 31
Table 5.1 The residual stress, grain size and hardness at different substrate bias. 56
Table 5.2 The roughness and brilliance at different substrate bias 59
Table 5.3 Effect of substrate bias for TiZrN thin films in different regions 60

[1] U. Wiiala, I. Penttinen, A. Korhonen, J. Aromaa, E. Ristolainen, "Improved corrosion resistance of physical vapour deposition coated TiN and ZrN", Surface and Coatings Technology 41/2 (1990) 191.
[2] H. Holleck, "Material selection for hard coatings", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4/6 (1986) 2661.
[3] W.D. Sproul, "Very high rate reactive sputtering of TiN, ZrN and HfN", Thin Solid Films 107/2 (1983) 141.
[4] E. Török, A. Perry, L. Chollet, W. Sproul, "Young's modulus of TiN, TiC, ZrN and HfN", Thin Solid Films 153/1 (1987) 37.
[5] Y.-W. Lin, J.-H. Huang, G.-P. Yu, "Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering", Thin Solid Films 518/24 (2010) 7308.
[6] Y.-W. Lin, J.-H. Huang, G.-P. Yu, "Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate", Journal of Vacuum Science & Technology A 28/4 (2010) 774.
[7] Y.-F. Chen, "Effect of Composition on Fracture Toughness of Ti1-xZrxN Hard Coating", Master Thesis, National Tsing Hua University, R.O.C (2014).
[8] M. Ahlgren, H. Blomqvist, "Influence of bias variation on residual stress and texture in TiAlN PVD coatings", Surface and Coatings Technology 200/1 (2005) 157.
[9] R.K. Waits, "Planar magnetron sputtering", Journal of Vacuum Science and Technology 15/2 (1978) 179.
[10] B. Window, N. Savvides, "Charged particle fluxes from planar magnetron sputtering sources", Journal of Vacuum Science & Technology A 4/2 (1986) 196.
[11] B. Window, N. Savvides, "Unbalanced dc magnetrons as sources of high ion fluxes", Journal of Vacuum Science & Technology A 4/3 (1986) 453.
[12] B. Window, "Recent advances in sputter deposition", Surface and Coatings Technology 71 (1995) 93.
[13] P.J. Kelly, R.D. Arnell, "Magnetron sputtering: a review of recent developments", Vacuum 56 (2000) 159.
[14] H.M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, J.-C. Parlebas, "Investigations on non-stoichiometric zirconium nitrides", Applied Surface Science 200/1 (2002) 231.
[15] I. Milošev, H.-H. Strehblow, B. Navinšek, "Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation", Thin Solid Films 303/1 (1997) 246.
[16] I. Sakamoto, S. Maruno, P. Jin, "Preparation and microstructure of reactively sputtered Ti 1− x Zr x N films", Thin Solid Films 228/1 (1993) 169.
[17] L.M.P. U.K. Wiiala, A.S. Korhonen, J. Aromaa, E. Ristolainen Surf. Coat. Technol 41 (1990) 191.
[18] T. Yotsuya, M. Yoshitake, T. Kodama, "Low-temperature thermometer using sputtered ZrNx thin film", Cryogenics 37/12 (1997) 817.
[19] W.-L. Pan, G.-P. Yu, J.-H. Huang, "Mechanical properties of ion-plated TiN films on AISI D2 steel", Surface and Coatings Technology 110/1 (1998) 111.
[20] J.-H. Huang, C.-H. Ho, G.-P. Yu, "Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (100) and stainless steel substrates", Materials chemistry and physics 102/1 (2007) 31.
[21] H.A. Wriedt, J.L. Murray, "The N-Ti (Nitrogen-Titanium) System", Bulletin of Alloy Phase Diagrams 8 (1987) 4.
[22] H. Okamoto, "N-Zr (Nitrogen-Zirconium)", Phase Equilibria and Diffusion 27 (2006) 551.
[23] J. Kim, J. Achenbach, P. Mirkarimi, M. Shinn, S. Barnett, "Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy", Journal of applied physics 72/5 (1992) 1805.
[24] J.-H. Huang, K.-W. Lau, G.-P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surface and Coatings Technology 191/1 (2005) 17.
[25] A.-N. Wang, G.-P. Yu, J.-H. Huang, "Fracture toughness measurement on TiN hard coatings using internal energy induced cracking", Surface and Coatings Technology 239 (2014) 20.
[26] A.J. Perry, V. Valvoda, D. Rafaja, "X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method", Thin Solid Films 214/2 (1992) 169.
[27] K. Chen, L. Zhao, J. Rodgers, S.T. John, "Alloying effects on elastic properties of TiN-based nitrides", Journal of Physics D: Applied Physics 36/21 (2003) 2725.
[28] A. Perry, "A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN", Thin Solid Films 193 (1990) 463.
[29] M.-L. Cai, "Depositing thick TiN film by adjusting processing parameters of unbalanced magnetron sputtering", Master Thesis, National Tsing Hua University, R.O.C (2013).
[30] P. Jin, S. Maruno, "Evaluation of internal stress in reactively sputter-deposited ZrN thin films", Japanese journal of applied physics 30/part 1 (1991) 1463.
[31] H.-Y. Chen, F.-H. Lu, "Oxidation behavior of titanium nitride films", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23/4 (2005) 1006.
[32] Mayumi B, Takeyama, Takaomi Itoi, Eiji Aoyagi, A. Noya, "Diffusion barrier properties of nano-crystalline TiZrN films in Cu-Si contact systems", Appl. Surf. Sci. 216 (2003) 181.
[33] O. Knotek, A. Barimani, "On Spinodal decomposition in magnetron sputtered (Ti,Zr)nitride and carbide thin films", Thin Solid Films 174 (1989) 51.
[34] K. Rutherford, I. Hutchings, "Micro-scale abrasive wear testing of PVD coatings on curved substrates", Tribology Letters 2/1 (1996) 1.
[35] L. Donohue, J. Cawley, J. Brooks, "Deposition and characterisation of arc-bond sputter Ti x Zr y N coatings from pure metallic and segmented targets", Surface and Coatings Technology 72/1 (1995) 128.
[36] C.-W. Lu, "Characterization of Structure and Mechanical Properties of TiZrN Thin Films Deposited by DC Unbalanced Magnetron Sputtering: Effect of Nitrogen Flow Rate", Master Thesis, National Tsing Hua University, R.O.C (2012).
[37] Y. Igasaki, H. Mitsuhashi, "The effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive RF sputtering", Thin Solid Films 70/1 (1980) 17.
[38] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, G.-P. Yu, "Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment", Materials Science and Engineering: A 500/1 (2009) 104.
[39] G. Abadias, Y. Tse, P. Guerin, V. Pelosin, "Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering", Journal of applied physics 99/11 (2006) 113519.
[40] W.-J. Chou, G.-P. Yu, J.-H. Huang, "Bias effect of ion-plated zirconium nitride film on Si (100)", Thin Solid Films 405/1 (2002) 162.
[41] C.-H. Ma, J.-H. Huang , H Chen "Texture evolution of transition-metal nitride thin films by ion beam assisted deposition", Thin Solid Films 446.2 (2004) 184-193
[42] Y. Cheng, B. Tay, S. Lau, X. Shi, "Influence of substrate bias on the structure and properties of (Ti, Al) N films deposited by filtered cathodic vacuum arc", Journal of Vacuum Science & Technology A 19/3 (2001) 736.
[43] I. Petrov, L. Hultman, J.E. Sundgren, J. Greene, "Polycrystalline TiN films deposited by reactive bias magnetron sputtering: Effects of ion bombardment on resputtering rates, film composition, and microstructure", Journal of Vacuum Science & Technology A 10/2 (1992) 265.
[44] C. He, J. Zhang, J. Wang, G. Ma, D. Zhao, Q. Cai, "Effect of structural defects on corrosion initiation of TiN nanocrystalline films", Applied Surface Science 276 (2013) 667.
[45] L. Van Leaven, M. Alias, R. Brown, "Corrosion behavior of ion plated and implated films", Surface and Coatings Technology 53/1 (1992) 25.
[46] M.F. K. Takizawa, K. KuroKawa, H. Okada and H. Imai, Hyomen Gijutsu, /42 (1991) 1152.
[47] D. Briggs, M.P. Seah, "Practical surface analysis by Auger and X-ray photoelectron spectroscopy", D. Briggs, & M. P. Seah,(Editors), John Wiley & Sons, Chichester 1983, xiv+ 533 (1983).
[48] http:/www.cem.msu.edu/~cem924sg/XPSASFs.html.
[49] P. Scherrer, Gött. Nachr 2 (1918) 98.
[50] M.J.B. L.V. Azaroff, " The powder method in X-ray crystallography", (1958).
[51] G. Abadias, L. Koutsokeras, S. Dub, G. Tolmachova, A. Debelle, T. Sauvage, P. Villechaise, "Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N", Journal of Vacuum Science & Technology A 28/4 (2010) 541.
[52] S.M. Sze, VLSI Technology, p.184, AT&T Bell Laboratories, Murray Hill, New Jersey (1983).
[53] W.C. Oliver, G.M. Pharr, "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of materials research 7/6 (1992) 1564.
[54] G.G. Stoney, "The tension of metallic films deposited by electrolysis", Proc. R. Soc. Lond. A 82 (1909) 172.
[55] W. Zhang, Y.L. Yao, I.C. Noyan, "Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation", J. Manuf. Sci. Eng . 126/1 (2004) 10.
[56] CIE, Tech. Rept., vol. Tech. Rept., Bureau Central de la CIE, 1971, p. 1.
[57] CIE, Tech. Rept., vol. Tech. Rept., Bureau Central de la CIE, 1978.
[58] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, PA, 1941.
[59] W.-J. Chou, G.-P. Yu, J.-H. Huang, "Deposition of TiN thin films on Si (100) by HCD ion plating", Surface and Coatings Technology 140/3 (2001) 206.
[60] Q. Y. Chen, "Characterization of structure and mechanical properties of nano-crystalline TiZrN films deposited by unbalanced magnetron sputtering: the effect of Ti and Zr target current", Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2012.
[61] J. Eshelby, F. Frank, F. Nabarro, "XLI. The equilibrium of linear arrays of dislocations", Philosophical Magazine 42/327 (1951) 351.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *