帳號:guest(3.142.42.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林哲賢
作者(外文):Lin, Che Hsien
論文名稱(中文):碳基奈米複合材料於染料敏化太陽能電池與超級電容之應用
論文名稱(外文):Carbon-based hybrid nanomaterials for dye-sensitized solar cells and supercapacitors application
指導教授(中文):蔡春鴻
曾繁根
指導教授(外文):Tsai, Chuen Horng
Tseng, Fan Gang
口試委員(中文):謝建國
薛康琳
林建宏
戴念華
口試委員(外文):Hsieh, Chien Kuo
Hsueh, Kan Lin
Lin, Jarrn Horng
Tai, Nyan Hwa
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011517
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:116
中文關鍵詞:奈米碳材複合材料染料敏化太陽能電池超級電容器
外文關鍵詞:carbon nanomaterialshybrid materialsdye-sensitized solar cellssupercapacitors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:160
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,過度使用石化燃料造成了許多能源議題,包含能源的浩劫以及全球暖化所造成的氣候變遷與環境污染,這些議題逐漸地被受到注目,人們也進而尋求發展潔淨、高效能且具永續性之再生能源,以及發展產能與儲能相關應用的新技術來解決這些能源議題。為此目的,應用於染料敏化太陽能電池以及超級電容等等之綠能元件被認為是用來解決這些能源議題最佳的選擇。
本論文的第一部份我們以氧氣輔助低壓氣相沉積法發展了在透明導電基板上直接成長奈米碳管的技術,透過親水處理後並在此直接成長之奈米碳管表面利用電化學電鍍法分散二硫化鉬觸媒,建造成為一個具有三維立體之奈米複合結構,並做為染料敏化太陽能電池之對電極應用。而此直接成長之二硫化鉬/奈米碳管對電極應用於染料敏化太陽能電池具有約7.83 %的光電轉換效率,相對於傳統鉑金對電極而言,提升了將近10 %的光電轉換效率。我們的研究發現,二硫化鉬/奈米碳管這樣的一個三維立體奈米複合結構能夠完全取代鉑金的使用,並成為一個具有高效率、低成本的對電極材料應用於染料敏化太陽能電池。而在本論文的第二部分我們成功地製備了三維立體石墨烯結構,並在其表面直接成長奈米碳纖維成為一個具有高比表面積、低電阻且具有優異的縱向橫向電子傳導能力之三維立體複合電極,並應用於超級電容中。本論文的第三部分進一步的針對此複合碳材表面的親疏水性質做了更深入的探討,我們提供了一個快速親水的方式,透過酒精的浸泡處裡將疏水性的碳材表面轉換為親水性,更透過進一步的酸化處理來活化碳材表面的介孔/微孔結構增加固液介面的接觸面積,進一步提升了電極的電雙層電容量,而酸化處理所修飾的表面含氧官能基更提供了擬電容之儲能效果。這樣的一個活化過程提供了一個快速且簡單的方法,顯著的提升了元件之電容量以及能量密度。我們的研究將為未來高效率、低成本之染料敏化太陽能電池以及高能量密度之超級電容元件提供一個新的發展策略。
Recently, the issue of energy crisis were raised the attention of which looking for developing new, clean, efficient, and sustainable resources of renewable energy, as well as new technologies associated with energy conversion and storage. For this end, green energy applications for energy generation (DSSCs) and energy storage devices (Supercapacitors) have been promising candidates for the energy requirement.
In the first part of this thesis, we developed the directly synthesis of carbon nanotubes (CNTs) on FTO glass at low temperature via the low pressure chemical vapor deposition (LPCVD) method. The specimens were further underwent an electrochemical deposition process to decorate layed-MoS2 nano-catalyst and construct a 3D hybrid nanostructure as counter electrode (C.E.) materials for DSSCs. The DSSC assembled with MoS2/CNTs C.E. exhibiting the photoconversion efficiency value of 7.83 %, which was 9.5 % higher than that of the Pt film. Our findings demonstrated that the MoS2/CNTs hybrid nanostructure is a promising candidate for application as a highly efficient and low-cost C.E. material in Pt-free DSSCs. In the second part, we fabricated the full-carbon hybrid nanoarchitecture of carbon nanofibers/3D graphene (CNFs/3DG), this directly growth of binder-free CNFs/3DG hybrid nanoarchitecture provides strong adhesion to the substrate, low internal resistance, and excellently vertical and horizontal electron transmission ability for electron collection for supercapacitors application. In the third part, we provide an economic strategy of facile transition process of carbon nanomaterials surface from hydrophobic to hydrophilic by Ethanol-treatment process. Moreover, the CV-acid treatment further improve the ELDC by actived meso-/micro-pore structure at the electrode/electrolyte interface and introduced the pseudocapacitance by decorated surface oxygen-containing groups. This method remarkably enhanced the capacitance, energy density, and could be a promising candidate in high-performance supercapacitor applications.
Table of Contents
Abstract I
摘 要 II
誌 謝 III
Table of Contents V
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
Chapter 2 Background and Theory 6
2.1. Dye-Sensitized Solar Cells (DSSCs) 6
2.1.1. Fundamental of DSSCs 7
2.1.2. Composition of DSSCs 9
2.1.2.1. Porous TiO2 Nanoparticles Working Electrode 9
2.1.2.2. Ruthenium (Ru)-Based Photosensitizer Dye 10
2.1.2.3. Electrolytes 12
2.1.2.4. Counter Electrode 13
2.1.3. The Characteristics of Solar Cells 14
2.2. Supercapacitors 15
2.2.1. Fundamental of Supercapacitors 15
2.2.1.1. EDLCs (Non-Faradaic process) 17
2.2.1.2. Pseudocapacitors (Faradaic process) 19
2.2.2. Test Configuration of Supercapacitors 19
2.2.3. The Characteristics of Supercapacitors 20
2.3. Carbon Nanomaterials 24
2.3.1. The Classical Carbon Nanomaterials 24
2.3.2. The Synthesis of Carbon Nanomaterials 26
2.3.3. Carbon Nanomaterials for Advanced Energy Conversion and Storage 28
2.3.3.1. Carbon Nanomaterials for Energy Conversion 29
2.3.3.2. Carbon Nanomaterials for Energy Storage 34
2.4. Molybdenum Disulfide 38
2.4.1. Ultrathin 2D Nanomaterials 38
2.4.2. The Typical Transition Metal Dichalcogenides (TMDs) Materials 39
2.4.3. The Synthesis of Molybdenum Disulfide 40
Chapter 3 Experimental Details 41
3.1. Electrochemical Deposition (ECD) and Analysis Systems 41
3.2. Oxygen-assisted Low Pressure Chemical Vapor Deposition (LPCVD) Systems 42
3.3. Sample Preparation 44
3.3.1. Part of DSSCs 44
3.3.2. Part of Supercapacitors 46
3.4. Instruments for Physical analyses, Photoconversion efficiency measurement and Electrochemical analysis. 47
Chapter 4 Hybrid Nanoarchitecture of Molybdenum Disulfide Anchored on Directly Grown Carbon Nanotubes (MoS2/CNTs) as a 3D Counter Electrode in Dye-sensitized Solar Cells 49
4.1. Low Temperature Direct Synthesis of MWCNTs on FTO glass 49
4.1.1. Introduction 49
4.1.2. Experimental 50
4.1.3. Results and Discussion 51
4.1.3.1. Investigation of FTO glass Thermal Degeneration 51
4.1.3.2. Oxygen Effect of the Directly Synthesis of MWCNTs on FTO glass 52
4.1.3.3. CNTs growth time vs. Length 53
4.2. Electrochemical Deposition of MoS2 on the Directly Grown MWCNTs as a 3D Counter Electrode in DSSCs 54
4.2.1. Introduction 54
4.2.2. Experimental 54
4.2.3. Results and Discussion 55
4.2.3.1. Composition and Morphologies 55
4.2.3.2. Electrocatalytic Properties 60
4.2.3.3. The Electrochemical Impedance Spectroscopy (EIS) properties 62
4.3. Charge-transfer speculated model 64
4.4. The Photovoltaic Performance of MoS2/CNTs Hybrid Counter Electrode in DSSCs 67
4.5. Conclusions 68
Chapter 5 Electrochemical Pulse Deposition of Ni Nanoparticles on the 3D Graphene to Synthesize CNFs as the Full-Carbon Hybrid Nanoarchitecture (CNFs/3DG) for Supercapacitors 70
5.1. Direct Synthesis of 3DG on Nickle Framework 70
5.1.1. Introduction 70
5.1.2. Experimental 71
5.1.3. Results and Discussion 72
5.2. Electrochemical Pulse Deposition of Ni Nanoparticles on the 3D Graphene to Synthesize CNFs/3DG Nanoarchitecture for Supercapacitors 75
5.2.1. Introduction 75
5.2.2. Experimental 76
5.2.3. Results and Discussion 77
5.2.3.1. Characterizations of CNFs/3DG hybrid electrode 77
5.2.3.2. Electrochemical Properties of CNFs/3DG hybrid electrode 80
5.3. Conclusions 83
Chapter 6 Hydrophilic Issue of Carbonaceous Nanomaterials and Further Functionalized Acid-treatment of CNFs/3DG Hybrid Nanoarchitecture for Supercapacitors 84
6.1. Hydrophilic Issue of Carbonaceous Nanomaterials 84
6.1.1. Introduction 84
6.1.2. Experimental 85
6.1.3. Results and Discussion 85
6.2. Functionalized Acid-treatment of CNFs/3DG Hybrid Nanoarchitecture for Supercapacitors 89
6.2.1. Introduction 89
6.2.2. Experimental 90
6.2.3. Results and Discussion 91
6.2.3.1. Characterizations of Functionalized-CNFs/3DG hybrid electrode 91
6.2.3.2. Electrochemical Properties of Functionalized-CNFs/3DG hybrid electrode 96
6.3. Charge-storage speculated model 100
6.4. Conclusions 101
Chapter 7 Summary and Outlook 102
Reference 108
Publication List 116

Reference
[1] B. Oregan and M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 353 (1991) 737-740.
[2] A. Sedghi and H. N. Miankushki, Effect of Multi Walled Carbon Nanotubes as Counter Electrode on Dye Sensitized Solar Cells, International Journal of Electrochemical Science, 9 (2014) 2029-2037.
[3] S. Hwang, M. Batmunkh, M. J. Nine, H. Chung, and H. Jeong, Dye-Sensitized Solar Cell Counter Electrodes Based on Carbon Nanotubes, Chemphyschem, 16 (2015) 53-65.
[4] F. Sammoura, K. S. Teh, A. Kozinda, X. N. Zang, and L. W. Lin, A Hybrid Supercapacitor Using Vertically Aligned Cnt-Polypyrrole Nanocomposite, 2014 Ieee 27th International Conference on Micro Electro Mechanical Systems (Mems), (2014) 354-357.
[5] W. Wang, I. Ruiz, S. R. Guo, Z. Favors, H. H. Bay, M. Ozkan, et al., Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes, Nano Energy, 3 (2014) 113-118.
[6] H. Y. Du, C. H. Wang, H. C. Hsu, S. T. Chang, H. C. Huang, L. C. Chen, et al., Graphene nanosheet-CNT hybrid nanostructure electrode for a proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 37 (2012) 18989-18995.
[7] C. K. Hsieh, M. C. Tsai, C. Y. Su, S. Y. Wei, M. Y. Yen, C. C. M. Ma, et al., A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells, Chemical Communications, 47 (2011) 11528-11530.
[8] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
[9] A. Hagfeldt and M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chemical Reviews, 95 (1995) 49-68.
[10] J. F. Zhang, P. Zhou, J. J. Liu, and J. G. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Physical Chemistry Chemical Physics, 16 (2014) 20382-20386.
[11] M. Ryan, Progress in Ruthenium Complexes for Dye Sensitised Solar Cells, Platinum Metals Review, 53 (2009) 216-218.
[12] Y. C. Qin and Q. Peng, Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells, International Journal of Photoenergy, (2012)
[13] H. Hoppe and N. S. Sariciftci, Organic solar cells: An overview, Journal of Materials Research, 19 (2004) 1924-1945.
[14] R. Kotz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 45 (2000) 2483-2498.
[15] G. H. Yu, X. Xie, L. J. Pan, Z. N. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2 (2013) 213-234.
[16] M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material's performance for ultracapacitors, Energy & Environmental Science, 3 (2010) 1294-1301.
[17] H. F. Huang, L. Q. Xu, Y. M. Tang, S. L. Tang, and Y. W. Du, Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application, Nanoscale, 6 (2014) 2426-2433.
[18] H. Kim, H. Choi, S. Hwang, Y. Kim, and M. Jeon, Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells, Nanoscale Research Letters, 7 (2012) 53
[19] P. J. Li, J. H. Wu, J. M. Lin, M. L. Huang, Y. F. Huang, and Q. G. Li, High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells, Solar Energy, 83 (2009) 845-849.
[20] H. Choi, H. Kim, S. Hwang, Y. Han, and M. Jeon, Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition, Journal of Materials Chemistry, 21 (2011) 7548-7551.
[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200.
[22] A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183-191.
[23] L. M. Dai, D. W. Chang, J. B. Baek, and W. Lu, Carbon Nanomaterials for Advanced Energy Conversion and Storage, Small, 8 (2012) 1130-1166.
[24] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, C-60 - Buckminsterfullerene, Nature, 318 (1985) 162-163.
[25] A. Herrmann, F. Diederich, C. Thilgen, H. U. Termeer, and W. H. Muller, Chemistry of the Higher Fullerenes - Preparative Isolation of C-76 by Hplc and Synthesis, Separation, and Characterization of Diels-Alder Monoadducts of C-70 and C-76, Helvetica Chimica Acta, 77 (1994) 1689-1706.
[26] M. Iyoda and M. Yoshida, Chemistry of Fullerenes - the High Reactivity and New Developments, Journal of Synthetic Organic Chemistry Japan, 53 (1995) 756-769.
[27] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56-58.
[28] S. Iijima and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-Nm Diameter, Nature, 363 (1993) 603-605.
[29] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[30] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, 6 (2014) 242-247.
[31] P. Dong, Y. Zhu, J. Zhang, F. Hao, J. J. Wu, S. D. Lei, et al., Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells, Journal of Materials Chemistry A, 2 (2014) 20902-20907.
[32] N. L. Yang, J. Zhai, D. Wang, Y. S. Chen, and L. Jiang, Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells, ACS Nano, 4 (2010) 887-894.
[33] M. Carmo, A. R. Dos Santos, J. G. R. Poco, and M. Linardi, Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications, Journal of Power Sources, 173 (2007) 860-866.
[34] M. C. Tsai, T. K. Yeh, and C. H. Tsai, Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum-ruthenium nanoparticles prepared by pulsed electrodeposition, International Journal of Hydrogen Energy, 36 (2011) 8261-8266.
[35] W. Lu, L. T. Qu, K. Henry, and L. M. Dai, High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes, Journal of Power Sources, 189 (2009) 1270-1277.
[36] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Graphene-Based Ultracapacitors, Nano Letters, 8 (2008) 3498-3502.
[37] C. Zheng, X. F. Zhou, H. L. Cao, G. H. Wang, and Z. P. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, Journal of Power Sources, 258 (2014) 290-296.
[38] M. Rahmani, R. Ismail, M. T. Ahmadi, M. J. Kiani, and K. Rahmani, Carrier Velocity in High-Field Transport of Trilayer Graphene Nanoribbon Field Effect Transistor, Science of Advanced Materials, 6 (2014) 633-639.
[39] N. Sule, S. C. Hagness, and I. Knezevic, Clustered impurities and carrier transport in supported graphene, Physical Review B, 89 (2014) 165402
[40] W. Chen, Z. L. Fan, G. F. Zeng, and Z. P. Lai, Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam, Journal of Power Sources, 225 (2013) 251-256.
[41] M. Zhou, T. Tian, X. F. Li, X. D. Sun, J. Zhang, Y. H. Chen, et al., Supercapacitance of chemically converted graphene with composite pores, Chemical Physics Letters, 581 (2013) 64-69.
[42] W. Wang, S. R. Guo, M. Penchev, I. Ruiz, K. N. Bozhilov, D. Yan, et al., Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors, Nano Energy, 2 (2013) 294-303.
[43] W. Wang, S. R. Guo, I. Lee, K. Ahmed, J. B. Zhong, Z. Favors, et al., Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors, Scientific Reports, 4 (2014)
[44] I. H. Son, J. H. Park, S. Kwon, S. Park, M. H. Rummeli, A. Bachmatiuk, et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nature Communications, 6 (2015)
[45] X. H. Wang, L. N. Sun, R. A. Susantyoko, Y. Fan, and Q. Zhang, Ultrahigh volumetric capacity lithium ion battery anodes with CNT-Si film, Nano Energy, 8 (2014) 71-77.
[46] H. Zhang, Ultrathin Two-Dimensional Nanomaterials, ACS Nano, 9 (2015) 9451-9469.
[47] Y. Lin, T. V. Williams, and J. W. Connell, Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets, Journal of Physical Chemistry Letters, 1 (2010) 277-283.
[48] M. Chhowalla, Z. F. Liu, and H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets, Chemical Society Reviews, 44 (2015) 2584-2586.
[49] M. Osada and T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics, Journal of Materials Chemistry, 19 (2009) 2503-2511.
[50] Q. Wang and D. O'Hare, Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets, Chemical Reviews, 112 (2012) 4124-4155.
[51] Y. Peng, Y. S. Li, Y. J. Ban, H. Jin, W. M. Jiao, X. L. Liu, et al., Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 346 (2014) 1356-1359.
[52] J. W. Colson, J. A. Mann, C. R. DeBlase, and W. R. Dichtel, Patterned Growth of Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene, Journal of Polymer Science Part a-Polymer Chemistry, 53 (2015) 378-384.
[53] Z. X. Fan, X. Huang, C. L. Tan, and H. Zhang, Thin metal nanostructures: synthesis, properties and applications, Chemical Science, 6 (2015) 95-111.
[54] H. Liu, Y. C. Du, Y. X. Deng, and P. D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chemical Society Reviews, 44 (2015) 2732-2743.
[55] M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials, Advanced Materials, 26 (2014) 992-1005.
[56] H. I. Karunadasa, E. Montalvo, Y. J. Sun, M. Majda, J. R. Long, and C. J. Chang, A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation, Science, 335 (2012) 698-702.
[57] J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nature Materials, 11 (2012) 963-969.
[58] A. M. Seayad and D. M. Antonelli, Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials, Advanced Materials, 16 (2004) 765-777.
[59] S. Y. Tai, C. J. Liu, S. W. Chou, F. S. S. Chien, J. Y. Lin, and T. W. Lin, Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells, Journal of Materials Chemistry, 22 (2012) 24753-24759.
[60] M. Al-Mamun, H. M. Zhang, P. R. Liu, Y. Wang, J. Cao, and H. J. Zhao, Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells, RSC Advances, 4 (2014) 21277-21283.
[61] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6 (2011) 147-150.
[62] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, 7 (2012) 699-712.
[63] G. C. Stevens and T. Edmonds, Catalytic Activity of Basal and Edge Planes of Molybdenum-Disulfide, Journal of the Less-Common Metals, 54 (1977) 321-330.
[64] C. B. Roxlo, M. Daage, D. P. Leta, K. S. Liang, S. Rice, A. F. Ruppert, et al., Catalytic Defects at Molybdenum-Disulfide Edge Planes, Solid State Ionics, 22 (1986) 97-104.
[65] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, et al., Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nature Nanotechnology, 8 (2013) 826-830.
[66] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, et al., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science, 331 (2011) 568-571.
[67] G. C. Huang, T. Chen, W. X. Chen, Z. Wang, K. Chang, L. Ma, et al., Graphene-Like MoS2/Graphene Composites: Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium, Small, 9 (2013) 3693-3703.
[68] S. Helveg, J. V. Lauritsen, E. Laegsgaard, I. Stensgaard, J. K. Norskov, B. S. Clausen, et al., Atomic-scale structure of single-layer MoS2 nanoclusters, Physical Review Letters, 84 (2000) 951-954.
[69] Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition, Advanced Materials, 24 (2012) 2320-2325.
[70] X. M. Fang, T. L. Ma, G. Q. Guan, M. Akiyama, T. Kida, and E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, 570 (2004) 257-263.
[71] G. Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. M. Li, E. Yenilmez, et al., Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) 16141-16145.
[72] A. Yella, M. Panthofer, M. Kappl, and W. Tremel, Snapshots of the Formation of Inorganic MoS2 Onion-Type Fullerenes: A "Shrinking Giant Bubble" Pathway, Angewandte Chemie-International Edition, 49 (2010) 2575-2580.
[73] O. Hod, Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why?, Journal of Chemical Theory and Computation, 8 (2012) 1360-1369.
[74] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen, and M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2, Nano Letters, 11 (2011) 5111-5116.
[75] B. C. Windom, W. G. Sawyer, and D. W. Hahn, A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems, Tribology Letters, 42 (2011) 301-310.
[76] S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 362 (2004) 2271-2288.
[77] M. Y. Yen, C. C. Teng, M. C. Hsiao, P. I. Liu, W. P. Chuang, C. C. M. Ma, et al., Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells, Journal of Materials Chemistry, 21 (2011) 12880-12888.
[78] L. H. Chang, C. K. Hsieh, M. C. Hsiao, J. C. Chiang, P. I. Liu, K. K. Ho, et al., A graphene-multi-walled carbon nanotube hybrid supported on oxide as a counter electrode of dye-sensitized solar cells, Journal of Power Sources, 222 (2013) 518-525.
[79] R. Cruz, J. P. Araujo, L. Andrade, and A. Mendes, Transparent graphene-based counter-electrodes for iodide/triiodide mediated dye-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 2028-2032.
[80] S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu, et al., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy & Environmental Science, 4 (2011) 1855-1865.
[81] T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale, 5 (2013) 52-71.
[82] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
[83] M. Beidaghi and C. L. Wang, Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance, Advanced Functional Materials, 22 (2012) 4501-4510.
[84] D. T. Pham, T. H. Lee, D. H. Luong, F. Yao, A. Ghosh, V. T. Le, et al., Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors, ACS Nano, 9 (2015) 2018-2027.
[85] X. S. Zhang, J. L. Jin, P. T. Yan, J. Xu, R. J. Zhang, and C. Wu, Structure and electrochemical performance of graphene/porous carbon coated carbon nanotube composite for supercapacitors, Materials Letters, 160 (2015) 190-193.
[86] Y. Z. Wu, S. Q. Liu, K. M. Zhao, H. Yuan, K. Z. Lv, and G. Y. Ye, Facile Synthesis of 3D Graphene Hydrogel/Carbon Nanofibers Composites for Supercapacitor Electrode, Ecs Solid State Letters, 4 (2015) M23-M25.
[87] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers, Physical Review Letters, 97 (2006)
[88] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, et al., Spatially resolved raman spectroscopy of single- and few-layer graphene, Nano Letters, 7 (2007) 238-242.
[89] A. Burke, Ultracapacitors: why, how, and where is the technology, Journal of Power Sources, 91 (2000) 37-50.
[90] L. L. Zhang, R. Zhou, and X. S. Zhao, Graphene-based materials as supercapacitor electrodes, Journal of Materials Chemistry, 20 (2010) 5983-5992.
[91] S. L. Jiang, T. L. Shi, Y. Gao, H. Long, S. Xi, and Z. R. Tang, Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors, Journal of Micromechanics and Microengineering, 24 (2014)
[92] P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008) 845-854.
[93] H. Z. Wang, Z. P. Huang, Q. J. Cai, K. Kulkarni, C. L. Chen, D. Carnahan, et al., Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes, Carbon, 48 (2010) 868-875.
[94] C. G. Hu and S. S. Hu, Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes, Langmuir, 24 (2008) 8890-8897.
[95] B. A. Kakade and V. K. Pillai, Tuning the wetting properties of multiwalled carbon nanotubes by surface functionalization, Journal of Physical Chemistry C, 112 (2008) 3183-3186.
[96] P. H. Li, X. D. Lim, Y. W. Zhu, T. Yu, C. K. Ong, Z. X. Shen, et al., Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly, Journal of Physical Chemistry B, 111 (2007) 1672-1678.
[97] T. W. Ebbesen, H. Hiura, M. E. Bisher, M. M. J. Treacy, J. L. ShreeveKeyer, and R. C. Haushalter, Decoration of carbon nanotubes, Advanced Materials, 8 (1996) 155-157.
[98] S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Covalent surface chemistry of single-walled carbon nanotubes, Advanced Materials, 17 (2005) 17-29.
[99] Y. L. Hsin, J. Y. Lai, K. C. Hwang, S. C. Lo, F. R. Chen, and J. J. Kai, Rapid surface functionalization of iron-filled multi-walled carbon nanotubes, Carbon, 44 (2006) 3328-3335.
[100] S. J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Llorente, A. Zettl, et al., A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides, Journal of the American Chemical Society, 130 (2008) 4238-+.
[101] A. Kaniyoor and S. Ramaprabhu, Enhanced efficiency in dye sensitized solar cells with nanostructured Pt decorated multiwalled carbon nanotube based counter electrode, Electrochimica Acta, 72 (2012) 199-206.
[102] Y. J. Oh, J. J. Yoo, Y. I. Kim, J. K. Yoon, H. N. Yoon, J. H. Kim, et al., Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochimica Acta, 116 (2014) 118-128.
[103] L. Y. Lin, Y. S. Wu, C. Chang, and F. G. Tseng, High Performance Nanocatalysts Supported on Micro/Nano Carbon Structures Using Ethanol Immersion Pretreatment for Micro DMFCs, 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Powermems 2013), 476 (2013) 012064
[104] G. Y. Zhu, Z. He, J. Chen, J. Zhao, X. M. Feng, Y. W. Ma, et al., Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode, Nanoscale, 6 (2014) 1079-1085.
[105] A. P. Yu, I. Roes, A. Davies, and Z. W. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Applied Physics Letters, 96 (2010)
[106] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, et al., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Advanced Functional Materials, 11 (2001) 387-392.
[107] C. S. Du and N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition, Journal of Power Sources, 160 (2006) 1487-1494.
[108] V. Ruiz, C. Blanco, R. Santamaria, J. M. Ramos-Fernandez, M. Martinez-Escandell, A. Sepulveda-Escribano, et al., An activated carbon monolith as an electrode material for supercapacitors, Carbon, 47 (2009) 195-200.
[109] N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, et al., Synthesis of Chemically Bonded Graphene/Carbon Nanotube Composites and their Application in Large Volumetric Capacitance Supercapacitors, Advanced Materials, 25 (2013) 6854-6858.
[110] E. Frackowiak, Carbon materials for supercapacitor application, Physical Chemistry Chemical Physics, 9 (2007) 1774-1785.
[111] T. Brousse, M. Toupin, and D. Belanger, A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, Journal of the Electrochemical Society, 151 (2004) A614-A622.
[112] K. Fic, G. Lota, M. Meller, and E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy & Environmental Science, 5 (2012) 5842-5850.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *