|
Reference [1] B. Oregan and M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 353 (1991) 737-740. [2] A. Sedghi and H. N. Miankushki, Effect of Multi Walled Carbon Nanotubes as Counter Electrode on Dye Sensitized Solar Cells, International Journal of Electrochemical Science, 9 (2014) 2029-2037. [3] S. Hwang, M. Batmunkh, M. J. Nine, H. Chung, and H. Jeong, Dye-Sensitized Solar Cell Counter Electrodes Based on Carbon Nanotubes, Chemphyschem, 16 (2015) 53-65. [4] F. Sammoura, K. S. Teh, A. Kozinda, X. N. Zang, and L. W. Lin, A Hybrid Supercapacitor Using Vertically Aligned Cnt-Polypyrrole Nanocomposite, 2014 Ieee 27th International Conference on Micro Electro Mechanical Systems (Mems), (2014) 354-357. [5] W. Wang, I. Ruiz, S. R. Guo, Z. Favors, H. H. Bay, M. Ozkan, et al., Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes, Nano Energy, 3 (2014) 113-118. [6] H. Y. Du, C. H. Wang, H. C. Hsu, S. T. Chang, H. C. Huang, L. C. Chen, et al., Graphene nanosheet-CNT hybrid nanostructure electrode for a proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 37 (2012) 18989-18995. [7] C. K. Hsieh, M. C. Tsai, C. Y. Su, S. Y. Wei, M. Y. Yen, C. C. M. Ma, et al., A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells, Chemical Communications, 47 (2011) 11528-11530. [8] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. [9] A. Hagfeldt and M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chemical Reviews, 95 (1995) 49-68. [10] J. F. Zhang, P. Zhou, J. J. Liu, and J. G. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Physical Chemistry Chemical Physics, 16 (2014) 20382-20386. [11] M. Ryan, Progress in Ruthenium Complexes for Dye Sensitised Solar Cells, Platinum Metals Review, 53 (2009) 216-218. [12] Y. C. Qin and Q. Peng, Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells, International Journal of Photoenergy, (2012) [13] H. Hoppe and N. S. Sariciftci, Organic solar cells: An overview, Journal of Materials Research, 19 (2004) 1924-1945. [14] R. Kotz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 45 (2000) 2483-2498. [15] G. H. Yu, X. Xie, L. J. Pan, Z. N. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2 (2013) 213-234. [16] M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material's performance for ultracapacitors, Energy & Environmental Science, 3 (2010) 1294-1301. [17] H. F. Huang, L. Q. Xu, Y. M. Tang, S. L. Tang, and Y. W. Du, Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application, Nanoscale, 6 (2014) 2426-2433. [18] H. Kim, H. Choi, S. Hwang, Y. Kim, and M. Jeon, Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells, Nanoscale Research Letters, 7 (2012) 53 [19] P. J. Li, J. H. Wu, J. M. Lin, M. L. Huang, Y. F. Huang, and Q. G. Li, High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells, Solar Energy, 83 (2009) 845-849. [20] H. Choi, H. Kim, S. Hwang, Y. Han, and M. Jeon, Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition, Journal of Materials Chemistry, 21 (2011) 7548-7551. [21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200. [22] A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183-191. [23] L. M. Dai, D. W. Chang, J. B. Baek, and W. Lu, Carbon Nanomaterials for Advanced Energy Conversion and Storage, Small, 8 (2012) 1130-1166. [24] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, C-60 - Buckminsterfullerene, Nature, 318 (1985) 162-163. [25] A. Herrmann, F. Diederich, C. Thilgen, H. U. Termeer, and W. H. Muller, Chemistry of the Higher Fullerenes - Preparative Isolation of C-76 by Hplc and Synthesis, Separation, and Characterization of Diels-Alder Monoadducts of C-70 and C-76, Helvetica Chimica Acta, 77 (1994) 1689-1706. [26] M. Iyoda and M. Yoshida, Chemistry of Fullerenes - the High Reactivity and New Developments, Journal of Synthetic Organic Chemistry Japan, 53 (1995) 756-769. [27] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56-58. [28] S. Iijima and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-Nm Diameter, Nature, 363 (1993) 603-605. [29] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [30] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, 6 (2014) 242-247. [31] P. Dong, Y. Zhu, J. Zhang, F. Hao, J. J. Wu, S. D. Lei, et al., Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells, Journal of Materials Chemistry A, 2 (2014) 20902-20907. [32] N. L. Yang, J. Zhai, D. Wang, Y. S. Chen, and L. Jiang, Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells, ACS Nano, 4 (2010) 887-894. [33] M. Carmo, A. R. Dos Santos, J. G. R. Poco, and M. Linardi, Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications, Journal of Power Sources, 173 (2007) 860-866. [34] M. C. Tsai, T. K. Yeh, and C. H. Tsai, Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum-ruthenium nanoparticles prepared by pulsed electrodeposition, International Journal of Hydrogen Energy, 36 (2011) 8261-8266. [35] W. Lu, L. T. Qu, K. Henry, and L. M. Dai, High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes, Journal of Power Sources, 189 (2009) 1270-1277. [36] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Graphene-Based Ultracapacitors, Nano Letters, 8 (2008) 3498-3502. [37] C. Zheng, X. F. Zhou, H. L. Cao, G. H. Wang, and Z. P. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, Journal of Power Sources, 258 (2014) 290-296. [38] M. Rahmani, R. Ismail, M. T. Ahmadi, M. J. Kiani, and K. Rahmani, Carrier Velocity in High-Field Transport of Trilayer Graphene Nanoribbon Field Effect Transistor, Science of Advanced Materials, 6 (2014) 633-639. [39] N. Sule, S. C. Hagness, and I. Knezevic, Clustered impurities and carrier transport in supported graphene, Physical Review B, 89 (2014) 165402 [40] W. Chen, Z. L. Fan, G. F. Zeng, and Z. P. Lai, Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam, Journal of Power Sources, 225 (2013) 251-256. [41] M. Zhou, T. Tian, X. F. Li, X. D. Sun, J. Zhang, Y. H. Chen, et al., Supercapacitance of chemically converted graphene with composite pores, Chemical Physics Letters, 581 (2013) 64-69. [42] W. Wang, S. R. Guo, M. Penchev, I. Ruiz, K. N. Bozhilov, D. Yan, et al., Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors, Nano Energy, 2 (2013) 294-303. [43] W. Wang, S. R. Guo, I. Lee, K. Ahmed, J. B. Zhong, Z. Favors, et al., Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors, Scientific Reports, 4 (2014) [44] I. H. Son, J. H. Park, S. Kwon, S. Park, M. H. Rummeli, A. Bachmatiuk, et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nature Communications, 6 (2015) [45] X. H. Wang, L. N. Sun, R. A. Susantyoko, Y. Fan, and Q. Zhang, Ultrahigh volumetric capacity lithium ion battery anodes with CNT-Si film, Nano Energy, 8 (2014) 71-77. [46] H. Zhang, Ultrathin Two-Dimensional Nanomaterials, ACS Nano, 9 (2015) 9451-9469. [47] Y. Lin, T. V. Williams, and J. W. Connell, Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets, Journal of Physical Chemistry Letters, 1 (2010) 277-283. [48] M. Chhowalla, Z. F. Liu, and H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets, Chemical Society Reviews, 44 (2015) 2584-2586. [49] M. Osada and T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics, Journal of Materials Chemistry, 19 (2009) 2503-2511. [50] Q. Wang and D. O'Hare, Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets, Chemical Reviews, 112 (2012) 4124-4155. [51] Y. Peng, Y. S. Li, Y. J. Ban, H. Jin, W. M. Jiao, X. L. Liu, et al., Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 346 (2014) 1356-1359. [52] J. W. Colson, J. A. Mann, C. R. DeBlase, and W. R. Dichtel, Patterned Growth of Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene, Journal of Polymer Science Part a-Polymer Chemistry, 53 (2015) 378-384. [53] Z. X. Fan, X. Huang, C. L. Tan, and H. Zhang, Thin metal nanostructures: synthesis, properties and applications, Chemical Science, 6 (2015) 95-111. [54] H. Liu, Y. C. Du, Y. X. Deng, and P. D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chemical Society Reviews, 44 (2015) 2732-2743. [55] M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials, Advanced Materials, 26 (2014) 992-1005. [56] H. I. Karunadasa, E. Montalvo, Y. J. Sun, M. Majda, J. R. Long, and C. J. Chang, A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation, Science, 335 (2012) 698-702. [57] J. Kibsgaard, Z. B. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nature Materials, 11 (2012) 963-969. [58] A. M. Seayad and D. M. Antonelli, Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials, Advanced Materials, 16 (2004) 765-777. [59] S. Y. Tai, C. J. Liu, S. W. Chou, F. S. S. Chien, J. Y. Lin, and T. W. Lin, Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells, Journal of Materials Chemistry, 22 (2012) 24753-24759. [60] M. Al-Mamun, H. M. Zhang, P. R. Liu, Y. Wang, J. Cao, and H. J. Zhao, Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells, RSC Advances, 4 (2014) 21277-21283. [61] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6 (2011) 147-150. [62] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, 7 (2012) 699-712. [63] G. C. Stevens and T. Edmonds, Catalytic Activity of Basal and Edge Planes of Molybdenum-Disulfide, Journal of the Less-Common Metals, 54 (1977) 321-330. [64] C. B. Roxlo, M. Daage, D. P. Leta, K. S. Liang, S. Rice, A. F. Ruppert, et al., Catalytic Defects at Molybdenum-Disulfide Edge Planes, Solid State Ionics, 22 (1986) 97-104. [65] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, et al., Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nature Nanotechnology, 8 (2013) 826-830. [66] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, et al., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science, 331 (2011) 568-571. [67] G. C. Huang, T. Chen, W. X. Chen, Z. Wang, K. Chang, L. Ma, et al., Graphene-Like MoS2/Graphene Composites: Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium, Small, 9 (2013) 3693-3703. [68] S. Helveg, J. V. Lauritsen, E. Laegsgaard, I. Stensgaard, J. K. Norskov, B. S. Clausen, et al., Atomic-scale structure of single-layer MoS2 nanoclusters, Physical Review Letters, 84 (2000) 951-954. [69] Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition, Advanced Materials, 24 (2012) 2320-2325. [70] X. M. Fang, T. L. Ma, G. Q. Guan, M. Akiyama, T. Kida, and E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, 570 (2004) 257-263. [71] G. Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. M. Li, E. Yenilmez, et al., Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) 16141-16145. [72] A. Yella, M. Panthofer, M. Kappl, and W. Tremel, Snapshots of the Formation of Inorganic MoS2 Onion-Type Fullerenes: A "Shrinking Giant Bubble" Pathway, Angewandte Chemie-International Edition, 49 (2010) 2575-2580. [73] O. Hod, Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why?, Journal of Chemical Theory and Computation, 8 (2012) 1360-1369. [74] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen, and M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2, Nano Letters, 11 (2011) 5111-5116. [75] B. C. Windom, W. G. Sawyer, and D. W. Hahn, A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems, Tribology Letters, 42 (2011) 301-310. [76] S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 362 (2004) 2271-2288. [77] M. Y. Yen, C. C. Teng, M. C. Hsiao, P. I. Liu, W. P. Chuang, C. C. M. Ma, et al., Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells, Journal of Materials Chemistry, 21 (2011) 12880-12888. [78] L. H. Chang, C. K. Hsieh, M. C. Hsiao, J. C. Chiang, P. I. Liu, K. K. Ho, et al., A graphene-multi-walled carbon nanotube hybrid supported on oxide as a counter electrode of dye-sensitized solar cells, Journal of Power Sources, 222 (2013) 518-525. [79] R. Cruz, J. P. Araujo, L. Andrade, and A. Mendes, Transparent graphene-based counter-electrodes for iodide/triiodide mediated dye-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 2028-2032. [80] S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu, et al., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy & Environmental Science, 4 (2011) 1855-1865. [81] T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale, 5 (2013) 52-71. [82] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565. [83] M. Beidaghi and C. L. Wang, Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance, Advanced Functional Materials, 22 (2012) 4501-4510. [84] D. T. Pham, T. H. Lee, D. H. Luong, F. Yao, A. Ghosh, V. T. Le, et al., Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors, ACS Nano, 9 (2015) 2018-2027. [85] X. S. Zhang, J. L. Jin, P. T. Yan, J. Xu, R. J. Zhang, and C. Wu, Structure and electrochemical performance of graphene/porous carbon coated carbon nanotube composite for supercapacitors, Materials Letters, 160 (2015) 190-193. [86] Y. Z. Wu, S. Q. Liu, K. M. Zhao, H. Yuan, K. Z. Lv, and G. Y. Ye, Facile Synthesis of 3D Graphene Hydrogel/Carbon Nanofibers Composites for Supercapacitor Electrode, Ecs Solid State Letters, 4 (2015) M23-M25. [87] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers, Physical Review Letters, 97 (2006) [88] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, et al., Spatially resolved raman spectroscopy of single- and few-layer graphene, Nano Letters, 7 (2007) 238-242. [89] A. Burke, Ultracapacitors: why, how, and where is the technology, Journal of Power Sources, 91 (2000) 37-50. [90] L. L. Zhang, R. Zhou, and X. S. Zhao, Graphene-based materials as supercapacitor electrodes, Journal of Materials Chemistry, 20 (2010) 5983-5992. [91] S. L. Jiang, T. L. Shi, Y. Gao, H. Long, S. Xi, and Z. R. Tang, Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors, Journal of Micromechanics and Microengineering, 24 (2014) [92] P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008) 845-854. [93] H. Z. Wang, Z. P. Huang, Q. J. Cai, K. Kulkarni, C. L. Chen, D. Carnahan, et al., Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes, Carbon, 48 (2010) 868-875. [94] C. G. Hu and S. S. Hu, Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes, Langmuir, 24 (2008) 8890-8897. [95] B. A. Kakade and V. K. Pillai, Tuning the wetting properties of multiwalled carbon nanotubes by surface functionalization, Journal of Physical Chemistry C, 112 (2008) 3183-3186. [96] P. H. Li, X. D. Lim, Y. W. Zhu, T. Yu, C. K. Ong, Z. X. Shen, et al., Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly, Journal of Physical Chemistry B, 111 (2007) 1672-1678. [97] T. W. Ebbesen, H. Hiura, M. E. Bisher, M. M. J. Treacy, J. L. ShreeveKeyer, and R. C. Haushalter, Decoration of carbon nanotubes, Advanced Materials, 8 (1996) 155-157. [98] S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Covalent surface chemistry of single-walled carbon nanotubes, Advanced Materials, 17 (2005) 17-29. [99] Y. L. Hsin, J. Y. Lai, K. C. Hwang, S. C. Lo, F. R. Chen, and J. J. Kai, Rapid surface functionalization of iron-filled multi-walled carbon nanotubes, Carbon, 44 (2006) 3328-3335. [100] S. J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Llorente, A. Zettl, et al., A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides, Journal of the American Chemical Society, 130 (2008) 4238-+. [101] A. Kaniyoor and S. Ramaprabhu, Enhanced efficiency in dye sensitized solar cells with nanostructured Pt decorated multiwalled carbon nanotube based counter electrode, Electrochimica Acta, 72 (2012) 199-206. [102] Y. J. Oh, J. J. Yoo, Y. I. Kim, J. K. Yoon, H. N. Yoon, J. H. Kim, et al., Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochimica Acta, 116 (2014) 118-128. [103] L. Y. Lin, Y. S. Wu, C. Chang, and F. G. Tseng, High Performance Nanocatalysts Supported on Micro/Nano Carbon Structures Using Ethanol Immersion Pretreatment for Micro DMFCs, 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Powermems 2013), 476 (2013) 012064 [104] G. Y. Zhu, Z. He, J. Chen, J. Zhao, X. M. Feng, Y. W. Ma, et al., Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode, Nanoscale, 6 (2014) 1079-1085. [105] A. P. Yu, I. Roes, A. Davies, and Z. W. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Applied Physics Letters, 96 (2010) [106] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, et al., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Advanced Functional Materials, 11 (2001) 387-392. [107] C. S. Du and N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition, Journal of Power Sources, 160 (2006) 1487-1494. [108] V. Ruiz, C. Blanco, R. Santamaria, J. M. Ramos-Fernandez, M. Martinez-Escandell, A. Sepulveda-Escribano, et al., An activated carbon monolith as an electrode material for supercapacitors, Carbon, 47 (2009) 195-200. [109] N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, et al., Synthesis of Chemically Bonded Graphene/Carbon Nanotube Composites and their Application in Large Volumetric Capacitance Supercapacitors, Advanced Materials, 25 (2013) 6854-6858. [110] E. Frackowiak, Carbon materials for supercapacitor application, Physical Chemistry Chemical Physics, 9 (2007) 1774-1785. [111] T. Brousse, M. Toupin, and D. Belanger, A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, Journal of the Electrochemical Society, 151 (2004) A614-A622. [112] K. Fic, G. Lota, M. Meller, and E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy & Environmental Science, 5 (2012) 5842-5850.
|