帳號:guest(3.133.136.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊宸綱
作者(外文):Chuang, Chen Kang
論文名稱(中文):利用脈衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒
論文名稱(外文):Enhanced Catalytic Efficiency and CO Tolerance of Novel Pt Nanostructures Prepared by Pulsed Electrodeposition for Fuel Oxidation
指導教授(中文):葉宗洸
指導教授(外文):Yeh, Tsung Kuang
口試委員(中文):曾繁根
薛康琳
口試委員(外文):Tseng, Fan Gang
Hsueh, Kan Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011511
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:62
中文關鍵詞:觸媒電化學沉積法質子交換膜燃料電池樹枝狀結構
外文關鍵詞:PlatinumCatalystElectrodepositionPEMFCDendrite Structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:374
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
本研究利用脈衝式電化學沉積法在乾淨碳紙上製備新型態鉑觸媒作為質子交換膜燃料電池之觸媒。此新型態鉑觸媒之特殊形貌可增加觸媒反應活性,在無其它碳載體的情況下具有較多的觸媒表面積,進而提升觸媒催化效率及降低觸媒承載量。經由循環伏安法於硫酸及甲醇溶液下進行電化學測試,並利用X光粉末繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)以及電感耦合等離子體質譜(ICP-MS)對試片做進一步的分析。透過掃描式電子顯微鏡照片發現此新型態鉑觸媒的結構為樹枝狀結構,其主幹長度約為0.3至3 μm,而寬度約為400至600 nm。半電池電化學測試結果顯示,甲醇測試電流可達277.5 mA/cm2,其if/ib值為1.4,顯示鉑樹枝狀結構觸媒具有良好的抗一氧化碳毒化能力。使用最佳參數製備出的鉑樹枝狀觸媒在經由氫氣單電池測試,其功率密度可達506.7 mW/cm2,顯示鉑樹枝狀觸媒具有高催化性及耐久性。
Innovative support-free platinum (Pt) nanostructures were developed in this study for enhancing the anode catalyst activities for proton exchange membrane fuel cell (PEMFC) application. The platinum nanostructures were directly grown on carbon paper by a pulsed electrodeposition technique. The morphology of Pt nanostructures were investigated by SEM, and shown as dendritic structures instead of nanoparticles. The sizes of the dendritic structures are ranged from 0.3 to 3 μm in length and 400 to 600 nm in diameter. A cyclic voltammetry analysis was carried out for characterizing the behavior of methanol oxidation on specimen bearing the Pt dendritic nanostructures in mixed 1 M methanol and 0.5 M sulfuric acid solutions. It was found that the peak current density of methanol oxidation obtained from the cyclic voltammogram on the new Pt dendritic nanostructures specimen was 277.5 mA/cm2. Due to its unique morphology, the Pt dendritic nanostructures could exhibit a good carbon monoxide tolerance and high efficiency without the joined Ruthenium (Ru) catalyst. The catalytic efficiency of prepared Pt dendritic nanostructures was much better than that of a commercial Pt-black catalyst. It is noteworthy that the if/ib value of the Pt dendritic nanostructures is higher than 1.4, which is very different from pure Pt nanoparticles. The outcome signified that the novel catalyst morphology of the Pt dendritic nanostructures have remarkable CO tolerance even if Ru or other metal catalyst were not joined.
摘要 i
Abstract ii
致謝 iii
表目錄 iv
圖目錄 v
目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 基本原理與文獻回顧 4
2.1 燃料電池簡介 4
2.2 質子交換膜燃料電池結構 6
2.2.1 氣體擴散層 6
2.2.2 觸媒層 7
2.2.3 質子交換膜 8
2.2.4 雙極板 9
2.3 質子交換膜燃料電池工作原理 10
2.4 全電池極化損失 11
2.4.1 活性極化 12
2.4.2 歐姆極化 13
2.4.3 濃度極化 13
2.4.4 燃料穿透 14
2.5 觸媒製備方法 14
2.5.1 電化學沉積法 14
2.5.2 定電位電鍍法 14
2.5.3 脈衝式(往復式)電鍍法 16
2.5.4 奈米線、奈米柱觸媒製備 18
第三章 實驗方法 22
3.1 實驗流程 22
3.2 實驗藥品與設備 23
3.2.1 實驗藥品 23
3.2.2 實驗用氣體 23
3.2.3 實驗設備 23
3.2.4 分析儀器 24
3.3 電化學實驗裝製設計 25
3.4 碳紙親水化處理 25
3.5 電化學沉積法製備鉑觸媒 26
3.6 觸媒催化性分析 27
3.6.1 電化學分析 27
3.6.2 硫酸測試 (Sulfuric acid test) 28
3.6.3 甲醇測試 (Methanol oxidation test) 30
3.7 觸媒型態分析 31
3.7.1 場發射掃瞄式電子顯微鏡 (Field Emission Gun Scanning Electron Microscopy,FEG-SEM) 31
3.7.2 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 32
3.7.3 X光粉末繞射 (X-ray Powder Diffraction,XPRD) 32
3.7 組成比例分析 33
3.7.1感應耦合電漿質譜分析儀 (Inductively Coupled Plasma-Mass Spectrometer,ICP-MS) 33
3.8 單電池測試 (Single Cell Test) 34
3.8.1 膜電極組(Membrane Electrode Assembly,MEA)製備 34
3.8.2 漿料配製與噴塗 34
3.8.3 MEA壓合 35
3.8.4 單電池極化掃描測試 36
3.8.5 單電池耐久度測試 36
第四章 結果與討論 38
4.1 碳紙親水化處理 38
4.2 場發射掃描式電子顯微鏡之觸媒微影圖像分析(SEM) 39
4.3 穿透式電子顯微鏡之觸媒微影圖像分析(TEM) 44
4.4 X光粉末繞射法分析(XPRD) 44
4.5 半電池電化學分析結果 45
4.5.1 硫酸測試 45
4.5.2 甲醇測試 49
4.6 感應耦合電漿質譜分析儀分析(ICP-MS) 54
4.7 單電池測試分析結果 54
4.7.1 單電池極化掃描測試 54
4.7.2 單電池耐久度測試 57
第五章 結論 59
參考文獻 60
[1] W. R. Grove, "On voltaic series and the combination of gases by platinum", Phil. Mag., vol. 14, pp. 127-130, 1839
[2] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd ed. Chichester, West Sussex: J. Wiley, 2003.
[3] B. Wickman, "Nanostructured Model Electrodes for Studies of Fuel Cell Reactions", Chalmers University of Technology, 2010
[4] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells - Fundamentals and Applications," Fuel Cells, vol. 1, pp. 5-39, May 2001.
[5] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, "Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers," Electrochimica Acta, vol. 40, pp. 355-363, Feb 1995.
[6] T. R. Ralph and M. P. Hogarth, "Catalysis for Low Temperature Fuel Cells," Platinum Metals Review, vol. 46, pp. 117-135, Jul 2002.
[7] M. Naraghi, Carbon Nanotubes - Growth and Applications, InTech, 2011
[8] M. C. Tsai, T. K. Yeh, and C. H. Tsai, "An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation," Electrochemistry Communications, vol. 8, pp. 1445-1452, Sep 2006.
[9] M. M. E. Duarte, A. S. Pilla, J. M. Sieben, and C. E. Mayer, "Platinum particles electrodeposition on carbon substrates," Electrochemistry Communications, vol. 8, pp. 159-164, Jan 2006.
[10] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, and Z. L. Wang, "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity," Science, vol. 316, pp. 732-735, May 4 2007.
[11] Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, "Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?," Angewandte Chemie-International Edition, vol. 48, pp. 60-103, 2009.
[12] H. T. Tung, J. M. Song, Y. T. Nien, and I. G. Chen, "A novel method for preparing vertically grown single-crystalline gold nanowires," Nanotechnology, vol. 19, Nov 12 2008.
[13] B. Wiley, T. Herricks, Y. G. Sun, and Y. N. Xia, "Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons," Nano Letters, vol. 4, pp. 1733-1739, Sep 2004.
[14] B. J. Wiley, Z. H. Wang, J. Wei, Y. D. Yin, D. H. Cobden, and Y. N. Xia, "Synthesis and electrical characterization of silver nanobeams," Nano Letters, vol. 6, pp. 2273-2278, Oct 11 2006.
[15] Y. J. Xiong, I. Washio, J. Y. Chen, H. G. Cai, Z. Y. Li, and Y. N. Xia, "Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions," Langmuir, vol. 22, pp. 8563-8570, Sep 26 2006.
[16] Y. J. Xiong, H. G. Cai, B. J. Wiley, J. G. Wang, M. J. Kim, and Y. N. Xia, "Synthesis and mechanistic study of palladium nanobars and nanorods," Journal of the American Chemical Society, vol. 129, pp. 3665-3675, Mar 28 2007.
[17] Y. J. Xiong and Y. N. Xia, "Shape-controlled synthesis of metal nanostructures: The case of palladium," Advanced Materials, vol. 19, pp. 3385-3391, Oct 19 2007.
[18] J. Y. Chen, T. Herricks, M. Geissler, and Y. N. Xia, "Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process," Journal of the American Chemical Society, vol. 126, pp. 10854-10855, Sep 8 2004.
[19] J. Y. Chen, T. Herricks, and Y. N. Xia, "Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics," Angewandte Chemie-International Edition, vol. 44, pp. 2589-2592, 2005.
[20] Y. J. Song, Y. Yang, C. J. Medforth, E. Pereira, A. K. Singh, H. F. Xu, et al., "Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures," Journal of the American Chemical Society, vol. 126, pp. 635-645, Jan 21 2004.
[21] 張育鳴,「改善電鍍技術製備以奈米碳管為載體之直接甲醇燃料電池陽極觸媒層」,國立清華大學碩士論文,2007
[22] S. Thomas, M. Zalbowitz, and D. Gill, Fuel Cells: Green Power, USA, 2006
[23] J. Y. Sun, J. S. Huang, Y. X. Cao, and X. G. Zhang, "Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol," International Journal of Electrochemical Science, vol. 2, pp. 64-71, Jan 2007.
[24] Florida Solar Energy Center, Procedure for Performing PEM Single Cell Testing, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池
2. 探討去合金化效應對鉑修飾之鎳錫鈀多尺度觸媒於鹼性環境中氧氣還原反應之影響
3. 利用恆電位沉積法製備高活性鉑觸媒應用於磷酸燃料電池電極之製程優化
4. 利用脈衝式電鍍法製備應用於質子交換膜水電解器陰極的奈米結構鉑觸媒
5. 利用電化學沉積法於奈米碳管上製備高濃度鉑奈米 顆粒並應用於質子交換膜燃料電池陽極端之研究
6. 應用於質子交換膜燃料電池陰極端之奈米碳管支撐鉑鎳二元觸媒對於氧氣還原之效能研究
7. 水分子與白金觸媒接觸之分子動力模擬
8. Discovery of New Carbocyclizations Involving Activation of C–C Multiple Bonds by Electrophilic Noble Metals
9. 高效能白金觸媒顆粒承載於三維氧化石墨烯-應用於微型燃料電池
10. 利用電化學沉積法直接於微孔層上製備商用尺寸質子交換膜燃料電池之奈米鉑觸媒
11. 利用奈米碳管為載體製備應用於質子交換膜燃料電池陰極端之鉑鎳二元觸媒
12. 利用成長於碳布的奈米碳管為載體之直接甲醇燃料電池鉑與鉑釕觸媒之電化學及結構特性分析
13. 直接甲醇燃料電池陽極觸媒在不同製備條件的特性分析
14. 沸水式反應器於加氫水化學狀態下實施催化性與抑制性被覆之防蝕效益研究
15. 應用在燃料電池的甲醇濃度感測方法研究
 
* *