帳號:guest(3.12.36.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭于瑄
作者(外文):Peng, Yu-Hsuan
論文名稱(中文):鉑-二氧化鈦-金奈米指狀結構應用於可見光光觸媒產氫
論文名稱(外文):Pt-TiO2-Au nanofingers plasmonic structure (NFPS) for visible-light active photocatalysis
指導教授(中文):曾繁根
王本誠
指導教授(外文):Tseng, Fan-Gang
Wang, Pen-Cheng
口試委員(中文):魏培坤
黃鈺軫
口試委員(外文):Pei-Kuen Wei
Yuh-Jeen Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011503
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:58
中文關鍵詞:光觸媒氫能表面電漿奈米結構
外文關鍵詞:Photocatalysishydrogensurface plasmananostructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:376
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
太陽能是一個無汙染、便宜且能夠永續發展的乾淨能源,然而使用太陽能並非容易,如何使用太陽能變成關鍵的議題。儲存太陽能的方法有許多,其中將其轉換成氫能保存利用是其中一個已經被實際應用的方法。過去幾十年將太陽能轉換成氫能有幾個較常被使用的方法:太陽能電池電解水、生物產氫以及光觸媒...等。
其中,光觸媒產氫是利用半導體,電子電洞對分離的機制,進行氧化還原反應電解水產生氫氣,而過程中不會產生任何溫室氣體以及汙染物。然而目前光觸媒最大問題在於其吸收波段位於紫外光,並無法有效利用太陽光中比例較高的可見光。近年來,金屬照射可見光後發生表面電漿共振,產生熱電子,並將其傳至鄰近半導體的導帶,這樣的機制能增加其在可見光區水分解產氫的效能。
在此研究中,我們製作一製程容易且高效能的可見光光觸媒:鉑-二氧化鈦-金三層奈米指狀共振結構,此結構能夠吸收大部分的太陽能;藉由金的共振結構提供大量的熱電子,移動至二氧化鈦的導帶,再傳遞至鉑奈米顆粒,進行水分解反應產生氫氣,同時留在金表面的熱電洞則會與水進行氧化反應產生氧氣。
在電化學的量測中顯示在氫氣還原電位下,光電流提升了100%,間接表示了試片對於可見光水分解產氫的能力。
Sunlight is a non-polluting, inexpensive, and endlessly renewable source of clean energy, however, it can hardly be applied freely in demand. As a result, to store solar energy into another energy forms, such as hydrogen, is a more practical way for real applications. There were various methods developed in the past decade to transfer solar energy into hydrogen, including electrolysis of water using a solar cell, reforming of biomass, and photocatalytic. Among them, photocatalytic reactions based on electron-hole pair production in semiconductors can generate hydrogen without any CO2 or other pollution produced. However, most of light spectra employed were in UV region, posing low efficiency on the utilization of the whole sun-light energy. Recently, it was reported that hot electrons transferred from plasmonic structure to neighboring photocatalyst could enhance the photo response for solar water splitting, especially in visible light region. we propose a simple yet high efficient plasmonic structure incorporated with Pt-TiO2-Au sandwich nano fingers to provide numerous hot spot regions for harvesting photons over entire solar spectrum. The hot electrons generated from the surface plasmons in the gold nanocorrugation structures can be transferred via neighboring titanium dioxide into the platinum nanoparticles, thus help on generating hydrogen in higher efficiency.
Experimental results demonstrated the photoelectrochemical signal can be enhanced by 100% in on-off test under visible light with hydrogen reduction potential, indicating the possibility for high efficient hydrogen generation.
圖目錄 vii
表目錄 xi
第1章 緒論 1
1-1 前言 1
1-2 光觸媒簡介 3
1-2-1 本多-藤嵨效應(Honda-Fujishima effect) 3
1-2-2 光觸媒材料特性 4
1-2-3 光催化水分解原理 5
1-2-4 助催化劑 6
1-2-5 犧牲試劑原理 7
1-3 二氧化鈦光觸媒特性與製備 8
1-4 光化反應的增強 10
1-4-1 單一能隙的光化反應增強 10
1-4-2 不同能隙間的電子傳遞 11
1-4-3 表面電漿共振應用於光化反應 13
第2章 文獻回顧 17
2-1 表面電漿共振結構 17
2-2 自組裝奈米聚苯乙烯球陣列 21
2-2-1 液膜蒸發法 21
2-2-2 旋佈法 21
2-2-3 Langmuir-Blodgett 薄膜沉積法 21
2-2-4 液面沉積法 22
2-3 研究動機與目的 23
第3章 實驗方法 24
3-1 奈米結構的製備 24
3-1-1 藥品及設備本研究藥品及設備如表所示。 24
表 3 2 製程設備資料 24
3-1-2 結構製備步驟 24
3-1-3 結構代號 27
3-2 結構鑑定與分析 27
第4章 結果與討論 30
4-1 不同週期平滑聚苯乙烯球光譜之量測 30
4-2 參考平面SEM影像 30
4-3 結構SEM 31
4-4 結構與沉積材料之比較 36
4-4-1 UV/vis光譜 36
4-4-2 循環伏安法量測 38
4-4-3 0V(v.s. SCE)下電流對時間之比較 42
4-4-4 0V(v.s. SHE)下電流對時間之比較 46
4-4-5 不同波長光源照射對結構之影響 52
第5章 結論與未來工作 53
5-1 結論 53
5-2 未來工作 54
5-2-1 實際產氫量量測 54
5-2-2 增加LSPR強度 55
5-2-3 加強材料之間的連結性 55
Boden, S. A. and D. M. Bagnall. "Tunable Reflection Minima of Nanostructured Antireflective Surfaces." Applied Physics Letters 93, no. 13 (2008): 133108.

Burdett, Jeremy K, Timothy Hughbanks, Gordon J Miller, James W Richardson Jr and Joseph V Smith. "Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K." Journal of the American Chemical Society 109, no. 12 (1987): 3639-3646.

Chen, H. M., C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang and K. H. Chen. "Quantum Dot Monolayer Sensitized Zno Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting." Angew Chem Int Ed Engl 49, no. 34 (2010): 5966-9.

Chen, H. M., C. K. Chen, R. S. Liu, L. Zhang, J. Zhang and D. P. Wilkinson. "Nano-Architecture and Material Designs for Water Splitting Photoelectrodes." Chem Soc Rev 41, no. 17 (2012): 5654-71.

Cho, I. S., Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng. "Branched Tio(2) Nanorods for Photoelectrochemical Hydrogen Production." Nano Lett 11, no. 11 (2011): 4978-84.

Cunningham, Alastair, Stefan Mühlig, Carsten Rockstuhl and Thomas Bürgi. "Coupling of Plasmon Resonances in Tunable Layered Arrays of Gold Nanoparticles." The Journal of Physical Chemistry C 115, no. 18 (2011): 8955-8960.

Denkov, ND, OD Velev, PA Kralchevsky, IB Ivanov, H Yoshimura and K Nagayama. "Two-Dimensional Crystallization." (1993).

Fuhrmann, Bodo, Hartmut S Leipner, Hans-Reiner Hoeche, Luise Schubert, Peter Werner and Ulrich Gösele. "Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy." Nano letters 5, no. 12 (2005): 2524-2527.

Fujishima, Akira and Kenichi Honda. "Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis11." NOTES 44, no. 4 (1971).

Grätzel, Michael. "Photoelectrochemical Cells." NATURE 414, (2001): 338-344.

Ho, Chi-Chih, Po-Yuan Chen, Keng-Hui Lin, Wen-Tau Juan and Wei-Li Lee. "Fabrication of Monolayer of Polymer/Nanospheres Hybrid at a Water-Air Interface." Acs Applied Materials & Interfaces 3, no. 2 (2011): 204-208.

Hsieh, Hsin-Yi, Jian-Long Xiao, Chau-Hwang Lee, Tsu-Wei Huang, Chung-Shi Yang, Pen-Cheng Wang and Fan-Gang Tseng. "Au-Coated Polystyrene Nanoparticles with High-Aspect-Ratio Nanocorrugations Via Surface-Carboxylation-Shielded Anisotropic Etching for Significant Sers Signal Enhancement." The Journal of Physical Chemistry C 115, no. 33 (2011): 16258-16267.

Jain, Prashant K, Wenyu Huang and Mostafa A El-Sayed. "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation." Nano Letters 7, no. 7 (2007): 2080-2088.

Kahraman, M., P. Daggumati, O. Kurtulus, E. Seker and S. Wachsmann-Hogiu. "Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures." Sci Rep 3, (2013): 3396.

Kudo, A. and Y. Miseki. "Heterogeneous Photocatalyst Materials for Water Splitting." Chem Soc Rev 38, no. 1 (2009): 253-78.

Li, L., L. Duan, Y. Xu, M. Gorlov, A. Hagfeldt and L. Sun. "A Photoelectrochemical Device for Visible Light Driven Water Splitting by a Molecular Ruthenium Catalyst Assembled on Dye-Sensitized Nanostructured Tio2." Chem Commun (Camb) 46, no. 39 (2010): 7307-9.

Liu, Li-Ming. "利用奈米柱陣列之米氏散射效應觀察活體細胞牽引力." 清華大學碩士論文, (2012).

Liu, Z., W. Hou, P. Pavaskar, M. Aykol and S. B. Cronin. "Plasmon Resonant Enhancement of Photocatalytic Water Splitting under Visible Illumination." Nano Lett 11, no. 3 (2011): 1111-6.

Mubeen, S., J. Lee, N. Singh, S. Kramer, G. D. Stucky and M. Moskovits. "An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons." Nat Nanotechnol 8, no. 4 (2013): 247-51.

Ni, Meng, Michael K. H. Leung, Dennis Y. C. Leung and K. Sumathy. "A Review and Recent Developments in Photocatalytic Water-Splitting Using Tio2 for Hydrogen Production." Renewable and Sustainable Energy Reviews 11, no. 3 (2007): 401-425.

Riis, Trygve, Elisabet F. Hagen, Preben J. S. Vie and ystein Ulleberg. Hydrogen Production and Storage: International Energy Agency (IEA), 2006.

Yu, Q., P. Guan, D. Qin, G. Golden and P. M. Wallace. "Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays." Nano Lett 8, (2008): 1923-1928.

洪雅鈺. "二氧化鈦光觸媒產氫之研究." 清華大學碩士論文, (2007).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *