帳號:guest(18.116.40.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉淞巖
論文名稱(中文):新型光電致變色智慧節能窗之研究
指導教授(中文):陳福榮
口試委員(中文):蔡春鴻
謝建國
蘇清源
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011501
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:119
中文關鍵詞:光電致變色膠態電解質膠合玻璃安全玻璃低成本
相關次數:
  • 推薦推薦:0
  • 點閱點閱:138
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
本實驗採用網印法與電鍍法製備光電致變色元件光電電極(二氧化鈦)與電致變色(三氧化鎢)電極,取代昂貴的濺鍍法,並採用聚乙烯醇縮丁醛高分子電解質作為離子傳導層,不僅減少電解質的漏液與揮發,另一方面聚乙烯醇縮丁醛常用於膠合安全玻璃之中間膜,聚乙烯醇縮丁醛與可塑劑混合製膜後,具有高透光性以及優異的黏彈、耐衝撞性質。
本實驗所製備之光電致變色元件褪色與著色時可見光穿透度分別為50%和16%、太陽熱能穿透度為52%和7%,已符合建築使用上光學操作範圍,在長效方面,元件於60天時效後約保有原本72%可見光變色範圍與85%太陽熱能調節範圍。此外,在落球衝擊測試中,光電致變色元件可藉由聚乙烯醇縮丁醛膠態電解質(PVB-electrolyte)吸收並分散衝擊力,成功的避免了衝擊時玻璃破碎飛濺的發生,因此,本實驗成功的製作出同時具有低成本、長效穩定性以及具有安全性的光電致變色元件,未來可全面應用於建築與汽車上。
Photoelectrochromic cells fabricated with titanium photo-electrode prepared by screen printing, tungsten trioxide electrochromic electrode prepared by electrodeposition and laminated by a Polyvinyl butyral polymer based ion conductor are introduced in this study. The fabricated processes save lots of equipment cost compare to sputter process. Polyvinyl butyral quasi-solid electrolytes reduce the solvent leakage, volatilities and provide excellent optical and physical properties such as high transmittance, elasticity and impact-resistance.
The visible transmittance of the quasi-solid PEC device is varied between 50% (bleached state) and 16% (coloured state). On the other hand, the solar radiation transmittance is varied between between 52% and 7%. After 60 days, the PEC device maintain 72% visible transmittance range and 85% solar radiation transmittance range, respectively. In falling ball impact testing, the interlayer keeps the layers of glass bonded even when broken, and its high strength prevents the steel ball completely pierce the glass.
目錄
中文摘要………………………………………………………………………………a
英文摘要………………………………………………………………………………b
圖目錄…………………………………………………………………………………e
表目錄…………………………………………………………………………………i

第一章 緒論
1-1 前言………………………………………………………………………………1
1-2 研究動機與目的…………………………………………………………………3
第二章 文獻回顧
2-1 染料敏化太陽能電池簡介………………………………………………………5
2-1-1 染料敏化太陽能電池發展………………………………………………5
2-1-2 染料敏化太陽能電池工作原理…………………………………………7
2-1-3 電解液…………………………………………………………………10
2-2 電致變色材料簡介………………………………………………………………12
2-2-1 電致變色發展……………………………………………………………13
2-2-2 電致變色元件之應用……………………………………………………14
2-2-3 電致變色元件工作原理…………………………………………………17
2-2-4 電致變色材料種類………………………………………………………20
2-2-5 三氧化鎢簡介……………………………………………………………23
2-2-6 三氧化鎢變色機制………………………………………………………27
2-3 光電致變色元件簡介……………………………………………………………31
2-3-1 光電致變色元件工作原理……………………………………………31
2-3-2 光電致變色元件研究近況……………………………………………35
2-4高分子電解質…………………………………………………………………40
2-4-1 高分子電解質之種類…………………………………………………41
2-4-2 高分子電解質之傳導機制……………………………………………45
2-4-3 塑化劑…………………………………………………………………52
2-4-4 聚乙烯醇缩丁醛………………………………………………………53
第三章 實驗步驟與分析方法
3-1 實驗步驟………………………………………………………………………57
3-1-1 玻璃基板清潔…………………………………………………………59
3-1-2 二氧化鈦薄膜製備……………………………………………………59
3-1-3 三氧化鎢薄膜製備……………………………………………………62
3-1-4 電解質製備……………………………………………………………63
3-1-5 光電致變色元件組裝…………………………………………………66
3-2 分析儀器與方法……………………………………………………………67
第四章 結果與討論
4-1 二氧化鈦薄膜分析……………………………………………………………77
 4-1-1 薄膜表面平坦化…………………………………………………………77
 4-1-2 薄膜厚度控制……………………………………………………………78
4-2 三氧化鎢薄膜分析……………………………………………………………80
 4-2-1 三氧化鎢薄膜之成長……………………………………………………80
 4-2-2 三氧化鎢薄膜成分分析…………………………………………………81
 4-2-3 三氧化鎢薄膜結構分析…………………………………………………81
 4-2-4 三氧化鎢薄膜形貌與厚度………………………………………………82
 4-2-5 三氧化鎢薄膜變色特性…………………………………………………83
 4-2-6 三氧化鎢薄膜壽命測試…………………………………………………88
4-3 電解質分析……………………………………………………………………90
 4-3-1 離子導電度………………………………………………………………90
4-4 光電致變色元件分析…………………………………………………………92
 4-4-1 光電致變色元件變色特性………………………………………………92
 4-4-2 光電致變色元件之長效壽命……………………………………………99
4-4-3 光電致變色元件膠合特性測試………………………………………103
第五章 結果與討論
5-1 結果與討論…………………………………………………………………107
第六章 參考文獻
6-1 參考文獻…………………………………………………………………109
[1] http://www.worldenergy.org/ (WEC, World Energy Coucil)
[2] C.M. Lampert, Materialstoday, 28 (2004)
[3] David R. Roberts. Preliminary Assessment of the Energy-Saving Potential of Electrochromic Windows in Residential Buildings, NREL/TP-550-46916 Dec. (2009)
[4] http://www.samsungsdi.com/nextenergy/dssc-solar-cell-battery.jsp
[5] http://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=dc1dc110-eaff-4a2a-8f5b-81f0654aed21#ixzz2ovnMK7ir
[6] West, W. Photogr. Sci. Eng. 18 (1974) 35.
[7] Namba, S.; Hishiki, Y. J. Phys. Chem. 69 (1965) 774.
[8] Bourdon, J. J. Phys. Chem. 69 (1965) 705.
[9] Bard, A. J. J. Am. Chem. Soc. 102 (1980) 5137.
[10] Gleria, M.; Memming, R. Phys. Chem. 98 (1975) 303.
[11] Clark, W. D.; Sutin, N. J. Am. Chem. Soc. 99 (1977) 4676.
[12] B. O’regan, M. Grätzel, “A low-cost, high-efficiency solar based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737-739.
[13] Meyer, G.J.; Lisensky, G.C.; Ellis, A.B. J. Amer. Chem. Soc. 110 (1988) 4914.
[14] Grätzel, M., , “Mesoporous oxide junctions and nanostructured solar cells,” Current Opinion in Colloid & Interface Science, 4 (1999) 314-321.
[15] J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. G. Sato, “A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells”, Advanced Functional Materials, 17 (2007) 2645-2652.
[16] L. Yang, Z. Zhang, S. Fang, X. Gao, M. Obata, “Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector”, Solar Energy, 81 (2007) 717-722.
[17] A. Hinsch, R. Kinderman, J. Kroon, A. Meyer, T. Meyer, R. Niepmann, J. V. Roosmalen, “ Long term stability of dye-sensitized solar cells for large area power applications (LOTS-DSC)”, 16 th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow (2000) 1–7.
[18] H. Pettersson, T. Gruszecki, “Long term stability of low-power dye-sensitized solar cells prepared by industrial methods”, Solar Energy Materials & Solar cells, 70 (2001) 203-212.
[19] Vembu Suryanarayanan, Kun-Mu Lee, Jian-Ging Chen, Kuo-Chuan Ho, High performance dye-sensitized solar cells containing 1-methyl-3-propylimidazolinium iodide-effect of additives and solvents, Journal of Electroanalytical Chemistry 633 (2009) 146–152
[20] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagide, “Influence of the electrolytes on electron transport in mesoporous TiO2 -electrolyte systems”, Journal physical chemistry B, 106 (2002) 2967–2972.
[21] H, Kusama, H. Arakawa, “Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance”, Journal of photochemistry and Photobiology A:Chemistry, 160 (2003) 171–179.
[22] H. Kusama, H. Arakawa, “Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance”, 162 (2004) 441–448.
[23] F. N. Mohammadi, H. T. Nguyen, G. BZoschloo, T. Lund, “An investigation of the photosubstitution reaction between N719-dyednanocrystalline TiO2 particles and 4-tert-butyl-pyridine”, Journal of photochemistry and photobiology A:Chemistry, 187 (2007) 348 –355.
[24] J. R. Platt, J.Chem.Phys.34 (1961) 862
[25] S. K. Deb, U. S. Patent 3, 521 (1970) 941
[26] F. T. Bauer and J. H. Bechtel, U.S. Patent, 4, 443 (1984) 057
[27] H. J. byker, U.S. Patent, 4, 902 (1990) 108
[28] J. H. Brechtel and H. J. Byker, U.S. Patent, 4,917 (1990) 477
[29] Michael Grätzel, Nature, 409 (2001) 575
[30] U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, Adv. Mater., 14 (2002) 845
[31] D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S. N. Rao, and N. Stobie, Solid State Ionics, 165 (2003) 315
[32] H. Becker and H. Wittkopf, Electrochim, Acta, 44 (1999) 3259
[33] A. Azens, et al., Solid State Ionics, 165 (2003) 1
[34] R. D. Rauh, Electrochim Acta, 44, (1999) 3165
[35] 楊明長,“電致變色系統簡介",化工,第40卷,第2 期,1993 年,64-68 頁
[36] N. Őzer, "Optical and Electrochemical Characteristics of Sol-Gel Deposited TungstenOxide Films: a Comparison", Thin Solid Films, 304 (1997) 310-314.
[37] C. G. Granqvist, "Electrochromic Tungsten Oxide Films Review of Progress 1993-1998", Solar Energy Materials and Solar Cells, 60 (2000) 201-262.
[38] C. M. Lampert, "Smart Switchable Glazing for Solar Energy and Daylight Control", Solar Energy Materials and Solar Cells, 52 (1998) 207-221.
[39] S.K.Deb, "A Novel Electrophotographic Systems", Applied Optics, 3 (1969) 192.
[40] B. Reichman and A. J. Bard, J. Electrochem. Soc., 126 (1979) 583
[41] T. Maruyama and S. Arai, J. Electrochem. Soc., 141 (1994) 1021
[42] R. A. Batchelor, M. S. Burdis, and J. R. Siddle, J. Electrochem. Soc., 143 (1996) 1050
[43] P. Judeinstein and J. Livage, J. Mater. Chem., 1 (1991) 621
[44] M. Regragui, M. Addou, A. Outzourhit, Elb. El Idrissi, A. Kachouane, and A. Bougrine, 77 (2003) 341
[45] P. K. Shen and A. C. C. Tseung, J. Mater. Chem., 2 (1992) 1141
[46] B. W. Faughnan, R. S. Crandall, P. M. Heyman, RCA Review, 36 (1975)177-197
[47] S. K. Deb, ”Optical and Photoelectric Properties and Color Centers in Thin Films of Tungsten oxide”, Philosophical Magazne, 27 (1973) 801-822
[48] O F Schirmer, M Imlau, C Merschjann and B Schoke, Electron small polarons and bipolarons in LiNbO3, J. Phys. 21 (2009) 12
[49] O.F. Schirmer, V. Wittwer, G. Baur and G. Braudt, J. Electrochem. Soc. 124 (1977) 749
[50] R.P. Howon, “Selective Optical Coatings on Plastic Sheet for Inexpensive Radiation Insulation of Visible Window.” Loughborough University Reports (1979)
[51] Gunnar A. Niklasson and Claes G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, Materials Chemistry, (2007) 127
[52] C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, A. Gregg, Nature, 383 (1996) 608-610
[53] A. Hauch, A. George, S. Baumgartner, U Opera Krasovec, B. Orel, New photoelectrochromic device, Electrochimica Acta 46 (2001) 2131–2136
[54] LIU Yong, SHEN Hui, CHEN Wei, WANG Hai, DENG YouJun, WANG DongHai, Novel photoelectrochromic cells fabricated with wirelike photo-electrode, Material Chemistry, 53 (2008) 3173-3177
[55] G. Leftheriotis , G. Syrrokostas, P. Yianoulis, Partly covered photoelectrochromic devices with enhanced coloration speed and efficiency, Solar Energy Materials & Solar Cells 96 (2012) 86–92
[56] Zhihui Jiao, Jun Ling Song, Xiao Wei Sun, Xue Wei Liu, Jin Min Wang, Lin Ke, Hilmi Volkan Demir, A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films, Solar Energy Materials & Solar Cells 98 (2012) 154–160
[57] François Pichot, Suzanne Ferrere, Roland J. Pitts, and Brian A. Gregg, Flexible Solid-State Photoelectrochromic Windows, Journal of The Electrochemical Society, 146 (1999) 4324-4326
[58] Ursa Opara Krasovec, Anneke Georg, Andreas Georg,Volker Wittwer, Joachim Luther, Marko Topic, Performance of a solid-state photoelectrochromic device, Solar Energy Materials & Solar Cells 84 (2004) 369–380
[59] Giovanni De Filpo, Sabrina Mormile, Fiore P. Nicoletta, Giuseppe Chidichimo, Fast, self-supplied, all-solid photoelectrochromic film, Journal of Power Sources 195 (2010) 4365–4369
[60] Chia-Hui Wu, Chih-Yu Hsu, Kuan-Chieh Huang, Po-Chin Nien,Jiann-T’suen Lin, Kuo-Chuan Ho, A photoelectrochromic device based on gel electrolyte with a fast switching rate, Solar Energy Materials & Solar Cells 99 (2012) 148–153
[61] P. V. Wright, Br. Polym. J. 7 (1973) 319。
[62] D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 14(1973)589
[63] M. B. Armand, J. M. Chabagno, M. Duclot, “Second International meeting Solid Electrolyte Eextend Abstracts”, St. Andrews Ecose,(1978)20-22
[64] Florian Muller-Plathe, Wilfred F. van Gunsteren, Journal of Chemistry Physics, 103 (1995) 4745
[65] M. G. Fiona, “Solid Polymer Electrolyte:Fundamentals and Tech-nological Applications” Chap. 6 (1997) 95-123.
[66] S. M. Li, C. C. Wang, C. Y. Chen, Electrochimica Acta, 48 (2003) 3699.
[67] S. M. Li, C. C. Wang, C. Y. Chen, Electrochimica Acta, 49 (2004) 4907.
[68] H. L. Wang, H. M. Kao, M. Digar, T. C. Wen, Macromolecules, 34 (2001) 529.
[69] C. G. Wu, C. H. Wu, M. I. Lu, H. J. Chuang, Journal of Applied Polymer Science, 99 (2006) 1530
[70] Liu Y. Lee, J. Y. Hong, L., Journal of Power Sources, 109 (2002) 507
[71] M. Watanabe, N. Ogata, British Polymer Journal, 20 (1988) 181.
[72] D. F. Shriver, G. C. Farrington, Chemical and Egineering News, 63 (1985) 42.
[73] M. A. Ranter, Aspects of the Theoretical treatment of polymer solid electrolytes : transport and models, in Polymer Reviews-1, Eds: J. R. MacCallum, C. A. Vincent, Elsevier Applied Science, Ch.7 (1987).
[74] J. L. Souquet, M. Duclot, M. Levy, Solid State Ionics, 85 (1996) 149,
[75] K. M. Abraham, M. Alamgir, Solid State Ionics, 70 (1994) 2.
[76] F. Croce, S. B. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon, Chemistry of Materials, 5 (1993) 1268
[77] P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Albinsson , B. E. Mellander, Solid State Ionics, 156 (2003) 179
[78] Z. Wang, B. Huang, S. Wang, R. Xue, L. Chen, Journal of The Electrochemical Society, 144 (1997) 778.
[79] C. R. Yang, J. T. Perng, Y. Y. Wang , C. C. Wan, Journal of Power Source, 89 (1996) 105
[80] Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Solid State Ionics, 121 (1999) 141
[81] B. Huang, Z. Wang, L. Chen, R. Xue, F. Wang, Solid State Ionics, 91 (1996) 279.
[82] Z. Wang, B. Huang, H. Huang, R. Xue, L. Chen, F. Wang, Spectrochimica Acta Part A, 52 (1996) 691.
[83] O. Bohnke, C. Rousselot, P. A. Gillet, C. Truche, Journal of The Electrochemical Society, 139 (1992) 1862.
[84] O. Bohnke, M. Frand, M. Rezrazi, C. Rousselot, C. Truche, Solid State Ionics, 66 (1993) 97
[85] P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Albinsson , B. E. Mellander, Solid State Ionics, 156 (2003) 179.
[86] D. Ostrovskii, A. Brodin, L. Torell, G. B. Appetecchi, B. Scrosati, Journal of Chemical Physics, 109 (1998) 7618.
[87] V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum Press, New York, 1978.
[88] Shaleen Gopal, Solar energy materials and solar cells, 45 (1997) 17
[89] P. Schiotter, SPIE, 2255 (1994) 351
[90] Dr. Holger Stenzel, GPD, 16 (2003) 423
[91] François Pichot, Suzanne Ferrere, Roland J. Pitts, and Brian A. Gregg, Flexible Solid-State Photoelectrochromic Windows, Journal of The Electrochemical Society, 146 (1999) 4324-4326
[92] 汪建民,“材料分析”,1998 年,中國材料科學學會
[93] Jih-Jen Wu, Min-Da Hsieh, Wen-Pin Liao, Wei-Ting Wu and Jen-Sue Chen Fast-Switching Photovoltachromic Cellswith Tunable Transmittance, 3, (2009) 2297–2303
[94] Thierry. Pauporte, J. Electrochemical Soc, 149 (2002) C539-C545
[95] 田福助、吳溪煌,“電化學-理論與應用”,1997 年,高立圖書
[96] 童海霞, 陈启元, 尹周澜, 胡慧萍, 李 洁, 赵 理. 包覆型催化剂 WO3 -TiO2 的制备及其光催化性能. 中国有色金属学报, 2008, 18(4): 682−687.
[97] 宋旭春, 郑遗凡, 王 芸, 曹广胜, 殷好勇. Na3PO4辅助水热合成WO3纳米棒. 无机材料学报, 2006, 21(6): 1472−1476.
[98] YAGI M, MARUYAMA S, SONE K, NAGAI K, NORIMATSU T. Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film. Journal of Solid State Chemistry, 181 (2008) 175−182.
[99] ZHENG H, SADEK A, LATHAM K, KALANTAR-ZADEH K. Nanoporous WO3 from anodized RF sputtered tungsten thin films. Electrochemistry Communications, 11 (2009) 768−771.
[100] WANG S, CHOU T, LIU C. Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators B, 94 (2003) 343−351.
[101] Kwang-Soon Ahn, a! Se-Hee Lee, Anne C. Dillon, C. Edwin Tracy, and Roland Pitts National Renewable Energy Laboratory, Golden, Colorado 80401
[102] Se-Hee Lee, Hyeonsik M. Cheong, C. Edwin Tracy, Angelo Mascarenhas, A. W. Czanderna, and Satyen K. Deb, Electrochromic coloration efficiency of a- WO3y thin films as a function of oxygen deficiency, APL. 75 (1999) 1541
[103] R. R. Kharade, Synthesis and characterization of chemically grown electrochromic tungsten oxide, J Sol-Gel Sci Technol 56 (2010) 177–183.
[104] Carl M. Lampert, Stability and Durability of Electrochromic Switching Films For Glazing (1989) 30-46
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *