帳號:guest(18.216.26.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃禮駿
作者(外文):Huang, Li-Chun
論文名稱(中文):藉由RF磁控濺鍍探討鐵磁層溫度變化於鐵酸鉍(BiFeO3)/鐵白金(FePt)雙層磊晶薄膜系統對交換耦合偏壓之影響
論文名稱(外文):Effect of ferromagnetic layer growth temperature on exchange bias of BiFeO3/FePt bi-layer epitaxial films
指導教授(中文):喻冀平
李信義
黃嘉宏
指導教授(外文):Yu, Ge-Ping
Lee, Hsin-Yi
Huang, Jia-Hong
口試委員(中文):喻冀平
李信義
黃嘉宏
蕭世男
口試委員(外文):Ge-Ping Yu
Hsin-Yi Lee
Jia-Hong Huang
Shih-Nan Hsiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:101001604
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:69
中文關鍵詞:薄膜磊晶交換耦合偏壓鉍鐵氧鐵白金
外文關鍵詞:thin filmepitaxialExchange biasBiFeO3FePt
相關次數:
  • 推薦推薦:0
  • 點閱點閱:471
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本論文主要目的是探討鉍鐵氧(反鐵磁層)和鐵白金(鐵磁層)雙層磊晶薄膜在鐵磁層不同沉積溫度下對於交換耦合偏壓的影響。在這篇文章中,我們利用高真空雙靶射頻磁控濺鍍系統鍍製我們的雙層薄膜,鉍鐵氧10奈米且鐵白金10奈米,並利用單晶(111)鈦酸鍶基板使薄膜磊晶成長,同時也有系統的研究鐵白金沉積溫度的影響。我們藉由X光繞射及反射圖譜確認磊晶成長的結構,部分的應變鬆弛在磊晶薄膜中垂直方向上可觀察的到。同步輻射X光繞射的結果可以清楚看到鐵白金在500度有明顯的六軸對稱,且用(002)方位角的掃描清楚的指出薄膜是沿著基板排列磊晶成長。在室溫裡改變不同鐵白金成長溫度下可以得到很大的交換耦合偏壓值54-412奧斯特在(111)鉍鐵氧/鐵白金雙層磊晶薄膜中,但是當FePt 溫度超過保存溫度時,交換耦合偏壓值快速的下降。鉍鐵氧表面形貌對於交換耦合偏壓的影響也同時被研究和探討。
The objective of the study was to investigate effect of ferromagnetic layer growth temperature on exchange bias of BiFeO3/FePt bi-layer epitaxial films. In this paper, we prepared the BiFeO3 (10 nm) / FePt (10 nm) thin films were epitaxially grown on (111) SrTiO3 (STO) single crystal substrates and systemically study effect of deposition temperature of FePt. The formation of epitaxial films structure was confirmed from the x-ray diffraction and (00L) Bragg reflection of x-ray. A slight partial relaxation of out-of-plane strain in epitaxial systems was observed. Synchrotron radiation XRD results display clear sixfold symmetries and (111) FePt/BiFeO3 films by using (002) azimuthal scan, unambiguously indicating that the present samples were epitaxially thin films. Large exchange field (Heb) of 54-412Oe at room temperature were obtained for the epitaxial (111) BiFeO3 (10 nm) / FePt (10 nm) films at different growth temperatures (300 – 700 ºC). With regard to temperature of FePt, there was a large EB value for the samples with FePt temperature at endpoint. As FePt temperature excesses the blocking temperature, the Heb decreases dramatically. The effect of surface morphology of BiFeO3 layers on Heb in the present samples was also investigated.
摘要 i
Abstract ii
Contents iii
Figures Lists vi
Table Lists x
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Application 1
Chapter 2 Literature Review 2
2.1 Origin of magnetism 2
2.2 Type of magnetic materials 2
2.2.1 Paramagnetic 5
2.2.2 Ferromagnetic (FePt) 6
2.2.3 Ferrimagnetic 7
2.2.4 Antiferromagnetic (BiFeO3) 8
2.3 Exchange bias 10
2.4 Theoretical basis of the exchange bias 13
2.4.1 Ideal Interface Model 14
2.4.2 Interfacial AFM Domain Wall Model 15
2.5 Structure and magnetism of FePt 17
2.6 Magnetic Anisotropy 19
2.6.1 Shape anisotropy 19
2.6.2 Magnetocrystalline anisotropy 21
2.7 Type of Perovskite materials (BiFeO3) 21
2.8 Characteristics of BiFeO3 multiferroic material 22
2.8.1 Microstructure 22
2.8.2 Ferroelectric properties of BiFeO3 23
2.8.3 Magnetic properties of BiFeO3 24
2.9 Paper review 26
2.10 Research purpose and motivation 27
Chapter 3 Instrument Description and Experimental Procedures 29
3.1 Samples fabrication 29
3.2 Experimental procedure 32
3.3 Structural Characterization 33
3.3.1 X-ray diffraction (XRD) 33
3.3.2 X-ray reflection (XRR) 35
3.3.3 Field-emission scanning electron microscope (FE-SEM) 37
3.4 Properties Measurement 38
3.4.1 Vibrating Sample Magnetometer (VSM) 38
Chapter 4 Results 41
4.1 Structure of BiFeO3/FePt bilayer thin films 41
4.2 Epitaxial quality of BiFeO3/FePt bilayer thin films 43
4.3 Morphology of BiFeO3/FePt bilayer thin films at different deposition temperature 45
4.4 Measurement of magnetism of BiFeO3/FePt bilayer thin films at different deposition temperatures 49
Chapter 5 Discussion 53
5.1 Ordered-volume fraction 53
5.1.1 Ordered-volume fraction analysis in discussion forums of BiFeO3/FePt bilayer thin films 55
5.1.2 Relation between ordered-volume fraction (f0) and coercivity field (Hc) 57
5.2 Exchange bias 59
5.2.1 Relationship between exchange bias (Heb) and temperature 59
5.2.2 Relation between exchange bias (Heb) and coercivity field (Hc) 62
Chapter 6 Conclusions 63
References 64
[1] 磁性物理學(一) (二) 近角聰信李學養譯 聯經出版社
[2] W. H. Meiklejohn, C. P. Bean, "New magnetic anisotropy", Phys. Rev. 102 (1956) 1413.
[3] Review - AFM Properties: K. Fukamichi, J. Magn. Soc.Japan 21 (1997) 1062.
[4] R. Jungblut, R. Coehoorn, M.T. Johnson, J. aan de Stegge, A. Reinders, "Orientational dependence of the exchange biasing in molecular‐beam‐epitaxy‐grown Ni80Fe20/Fe50Mn50 bilayers (invited)", J. Appl. Phys. 75 (1994) 6659.
[5] M. Takahashi, A. Yanai, S. Taguchi, T. Suzuki, ” A Study of Exchange Anisotropy in Co-CoO Evaporated Thin Films “, Jpn. J. Appl. Phys. 19 (1980) 1093.
[6] J. Nogue’s and Ivan K. Schuller, “Exchange bias”, J. Magn. Magn. Mater. 192 (1999) 203.
[7] D. Mauri, HC Siegmann, PS Bagus, and E. Kay,”Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate”, J. Appl. Phys. 62, 3047 (1987)
[8] A .P. Malozemoff ,”Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces“, Phys. Rev. B35,3679 (1987)
[9] A. E. Berkowitz, and Kentaro Takano,” Exchange anisotropy—a review “, J. Magn. Magn. Mater. 200 (1999) 552.
[10] R. Ramesh, NA Spaldin, ” Multiferroics: progress and prospects in thin films“, Nature materials 6,21-29 (2007)
[11] T. Zhao, A. Scholl, F. Zavaliche, H. Zheng, M. Barry, A. Doran, K. Lee, M. P. Cruz and R. Ramesh, “Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures”, Appl. Phys. Lett. 90 , 123104 (2007)
[12] Ying-Hao Chu , Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu-Jen Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan , Pei-Ling Yang , Arantxa Fraile-Rodríguez, Andreas Scholl, Shan X. Wang & R. Ramesh,” Electric-field control of local ferromagnetism using a magnetoelectric multiferroic“, Nature Materials 7, 478 - 482 (2008) .
[13] I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959).
[14] I. E. Dzyaloshinskii,” On the magneto-electrical effect in antiferromagnets“, Sov. Phys. JETP 11, 708 (1960).
[15] V Raghavendra Reddy et al,” High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3“, J. Phys.: Condens. Matter 24 336005(2012)
[16] James R. Teague, Robert Gerson, W.J. James,”Dielectric hysteresis in single crystal”, Solid State Comm. 12, 1073, 1970.
[17] Kwi Young Yun, Minoru Noda, Masanori Okuyama1, Hiromasa Saeki,Hitoshi Tabata and Keisuke Saito,“Structural and multiferroic properties of BiFeO3 thin films at room temperature”, J.Journal of Applied Physics.96,3399-3403,2004.
[18] M. I. Morozov, N. A. Lomanova, V. V. Gusarov.”Specific Features of BiFeO3 Formation in a Mixture of Bismuth(III) and Iron(III) Oxides”. Russian Journal of General Chemistry,73 (11) : 1676-1680 ,2003.
[19] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.M. Liu and Z. G. Liu,” Room-temperature saturated ferroelectric polarization in BiFeO3ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett. 84, 1731 (2004).
[20] V. R. Palkar, K. Ganesh Kumara and S. K. Malik,” Observation of room-temperature magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3 thin films”, Appl. Phys. Lett. 84, 2856 (2004).
[21] A. Gippius, D. F. Khozeev,et al.” Observation of spin modulated magnetic structure at Bi- and Fe-sites in BiFeO3 by nuclear magnetic resonance”, physica status solidi (a), 196, 1 (2003): 221
[22] M Hansen,” Constitution of binary alloys”, McGraw. N. Y., P .698(1958)
[23] K Watanabe, T Kaneko, S Ohnuma,” Temperature dependence of magnetic properties in Co-Pt, Fe-Pt and Cr-Pt permanent magnet alloys“, Mater. Trans. JIM. 35, 136(1994)
[24] Wanjiao Zhu et al,” First-principles studies of the magnetic anisotropy of the Cu/FePt/MgO system“, (2013) J. Phys.: Condens. Matter 25 396001(2013)
[25]http://fog.ccsf.org/~wkaufmyn/ENGN45/ENGN45_Online_Homework/04_Homework_CrystallineImperfections_SOLUTIONS.htm
[26] U. Kawald, W. Zemke, H. Bach, J. Pelzl, G.A. Saundersa,” Elastic constants and martensitic phase transitions in FePt and FeNiPt invar alloys“, Phsyica B 161, 72(1989)
[27] G. Asti and S. Rinaldi,” Nonanaliticity of the Magnetization Curve: Application to the Measurement of Anisotropy in Polycrystalline Samples“, Phys. Rev. Lett. 28, 1584(1972)
[28] 近角聰信著,張勲、李學養譯,“磁性物理學”,聯經出版社 (1982)
[29] 王坤池,國立台灣科技大學機研所碩士論文 (2001)
[30] 聶亨芸,國立清華大學材料工程研究所碩士論文 (2002)
[31] L. D. Landau and E. M. Lifshitz, “Electrodynamics of Continuous Media” (Pergamon, New York, 1984)
[32] 陳宿惠,國立台灣師範大學物理所碩論文(1999)
[33] 陳淑貞,國立台灣師範大學物理所碩論文(1999)
[34] T. Lottermoser et al.,” Magnetic phase control by an electric field“, Nature 430, 541 (2004).
[35] Y. H. Chu, L. W. Martin, R. Ramesh et al.,” Electric-field control of local ferromagnetism using a magnetoelectric multiferroic“, Nature Materials 7, 478 - 482 (2008).
[36] Moreira dos Santos, A.; Parashar, S.; Raju, A. R.; Zhao, Y. S.;Cheetham, A. K.; Rao, C. N. R.” Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3“, Solid State Comm. 2002, 122, 49–52.
[37] Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu,B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.;Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R.” Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures“, Science 2003,299, 1719–1722.
[38] Eerenstein, W.; Mathur, N. D.; Scott, J. F. “Multiferroic and magnetoelectric materials“, Nature 2006, 442, 759–765.
[39] Ramesh, R.; Spaldin, N. A. “Multiferroics: progress and prospects in thin films“, Nat. Mater. 2007, 6, 21–29.
[40] Lane W. Martin, Ying-Hao Chu, Mikel B. Holcomb, Mark Huijben, Pu Yu, Shu-Jen Han, Donkoun Lee, Shan X. Wang, and R. Ramesh. “Nanoscale Control of Exchange Bias with BiFeO3 Thin Films“, NANO LETTERS, 2008, Vol. 8, No. 7, 2050-2055.
[41] (a) Meiklejohn, W. H.; Bean, C. P. “New magnetic anisotropy“, Phys. ReV. 1956, 102, 1413–1414. (b) Meiklejohn, W. H.; Bean, C. P. “New magnetic anisotropy“,Phys. ReV 1957, 105, 904–913.
[42] H. Bea et al.,“Combining half-metals and multiferroics into epitaxial heterostructures for spintronics”, Appl. Phys, Lett. 88, 062502 (2006).
[43] H. Bea et al.,“Mechanisms of Exchange Bias with Multiferroic BiFeO3 Epitaxial Thin Films“, Phys. Rev. Lett. 100, 017204 (2008).
[44] J. Dho and M. G. Blamire, ”Controlling the exchange bias in multiferroic BiFeO3 and NiFe bilayers“, J. Appl. Phys. 106, 073914 (2009).
[45] Y. H. Chu et al.,”Electric-field control of local ferromagnetism using a magnetoelectric multiferroic“, Nature Mater. 7, 478 (2008)
[46] X. ─L. Zhou and S. ─H. Chen, ”Theoretical foundation of X-ray and neutron reflectometry“, Phys. Rep. 257,233 (1995)
[47] S. M. Heald and B. Nielsen,”Density and defects in thin metal films using x‐ray reflectivity and variable‐energy positrons”, J. Appl. Phys. 72, 4669 (1992)
[48] D.K. Bowen and B.K. Tanner,”Characterization of engineering surfaces by grazing-incidence X-ray reflectivity”, Nanotechnology 4, 175. (1993).
[49] http://fgamedia.org/faculty/rdcormia/NANO53/SEM.htm
[50] Foner, S.,“Versatile and Sensitive Vibrating-Sample Magnetometer”, The Review of Scientific Instruments, Vol. 30,No. 7, pp. 548-557,(1959).
[51] H. Bea et al.,“Combining half-metals and multiferroics into epitaxial heterostructures for spintronics”, Appl. Phys, Lett. 88, 062502 (2006).
[52] H. Bea et al.,“Mechanisms of Exchange Bias with Multiferroic BiFeO3 Epitaxial Thin Films“, Phys. Rev. Lett. 100, 017204 (2008).
[53] J. Dho and M. G. Blamire, “Controlling the exchange bias in multiferroic BiFeO3 and NiFe bilayers“, J. Appl. Phys. 106, 073914 (2009).
[54] D. Weller, “High Ku materials approach to 100 Gbits/in2“, IEEE Trans. Magn. 36, 10 (2000).
[55] T. Shima et al., “Preparation and magnetic properties of highly coercive FePt films”, Appl. Phys. Lett. 81, 1050 (2002).
[56] K. Barmak et al.,” On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films”, J. Appl. Phys. 98, 033904 (2005).
[57] G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2011).
[58] H. Bea et al.,” Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films”, Appl. Phys, Lett. 87, 072508 (2005).
[59] J. Wang et al.,” Response to Comment on "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 307, 1203 (2005).
[60] H. Naganuma, A. Kovacs, A. Hirata, Y. Hirotsu, and S. Okamura,”Structural analysis of polycrystalline BiFeO3 films by transmission electron microscopy“, Mater. Trans. 48, 2370 (2007).
[61] J. Noguse, J. Sort, V. Langlais et al.,” Exchange bias in nanostructures“, Phys. Rep., 422, 65 (2005).
[62] M. F. Toney, W. Y. Lee, J. A. Hedstrom and A. Kellock,” Thickness and growth temperature dependence of structure and magnetism in FePt thin films“, J. Appl. Phys. 93 9902-9907 (2003)
[63] H. W. Chang et al.,”Exchange bias in sputtered FM/BiFeO3 thin films (FM = Fe and Co)”, J. Appl. Phys. 111, 07B105 (2012).
[64] Luc Thomas, Andrew J. Kellock, and Stuart S. P. Parkin, “On the exchange biasing through a nonmagnetic spacer layer”, J. Appl. Phys. 87, 5061 (2000)
[65] A. Cebollada, R. F. C. Farrow, and M. F. Toney, in Magnetic Nanostructures, edited by H. S. Nalwa (American Scientific, Stevenson Ranch, CA, 2002), p. 93.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *