帳號:guest(18.217.87.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王奕筑
作者(外文):Wang, Yi-Chu
論文名稱(中文):雷射調製keV電子驅動之兆赫波Smith-Purcell超輻射
論文名稱(外文):THz Superradiant Smith-Purcell FEL driven by laser-modulated keV electrons
指導教授(中文):黃衍介
指導教授(外文):Huang, Yen-Chieh
口試委員(中文):張存續
劉偉強
口試委員(外文):Chang, Tsun-Hsu
Lau, Wai Keung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:101001502
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:56
中文關鍵詞:Smith-Purcell兆赫茲
外文關鍵詞:Smith-PurcellTHz
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
密度調製的電子束可用於產生在其調製頻率上的同調性自發輻射。本次實驗使用了多色雷射產生近兆赫茲的拍頻。利用此光源產生在keV的電子腔內產生光電流。利用調製過的電子束來驅動Smith-Purcell 自由電子雷射來產生兆赫茲同調性輻射。首先,將於Nd:YVO4雷射腔內放置一塊薄的etalon用來產生雙色的紅外光雷射。雙色雷射的頻率差為124.6 GHz。利用非線性晶體產生雙色雷射的四倍頻UV光,估計此UV光的頻率差也為12.4 GHz。利用此UV光照射於光陰極電子腔內,可產生頻率調製的光電流。取其中一個設計為例:將光源照射在一個可以產生10~25 keV的光陰極電子槍內,產生出近毫安培的電子從上方傳遞過一個長30 mm、週期240 um的光柵,用此產生Smith-Purcell輻射。我們使用電腦模擬軟體Magic在模擬中證實在與光柵夾角56度的方向產生了124.6 GHz的第三階輻射。其結果可清晰的在模擬結果中觀察到同調性的Smith-Purcell輻射。
A density-modulated electron beam can generate coherent spontaneous radiation at the harmonics of the modulating frequency. This study employs a multicolor laser beating at sub-THz frequencies to modulate the photocurrent from a keV electron gun. The modulated electron beam drives a Smith–Purcell FEL to generate THz coherent radiation. We first built an infrared two-color laser containing a thin etalon in an Nd:YVO4 laser cavity to generate two laser spectral components separated by 124.6 GHz. Quadrupling the laser frequency in nonlinear optical materials generates a UV frequency with adjacent components separated by 124.6 GHz. This UV laser is useful to modulate the photocurrent from a photoinjector at the comb frequencies. As a design example, the photocathode of a 10–25 keV DC electron gun is illuminated with this multicolor laser and the keV electron beam is propagated above a 30 mm-long Smith–Purcell grating with a groove period of 240 um. With 18.2 keV beam energy, our simulation using the MAGIC code confirms coherent radiation at the third harmonic of the 124.6 GHz at a 56-degree radiation angle from the Smith–Purcell grating. Coherent radiation can be observed in simulation with a sub-mA beam current.
Abstract 2
Abstract in Chinese 3
Acknowledgement 4
Table of Contents 6
List of Tables 7
List of Figures 8
Chapter 1 Introduction 11
1.1 Motivation 11
1.2 Smith-Purcell radiation 13
1.3 Superradiance 15
1.4 Overview 20
Chapter 2 Electron Injector 21
2.1 DC injector design 21
2.1.1 Cathode and anode design for the DC injector 22
2.1.2 Improvement of the DC accelerator 26
2.2 Laser source: two-color laser 32
2.2.1 Experimental setup 34
2.2.2 Experimental results 36
Chapter 3 Simulation result of Smith-Purcell radiation 39
3.1 Introduction 39
3.2 Parameters in the MAGIC Simulation 40
3.3 Simulation result 47
Chapter 4 Conclusion and Future Work 53
4.1 Conclusions 53
4.2 Future Work 54
References 55
[1] B. Ferguson and X. –C. Zhang, “Materials for terahertz science and
technology”, Nature Materials 1, 26-33, (2002).

[2] S.P. Mickan and X.-C. Zhang, Int. J. High Speed Electron. Syst. 13, 601, (2003).

[3] P.H. Siegel, IEEE Trans Microwave Theory Tech. 50, 910, (2002).

[4] T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and
backward Terahertz-wave difference-frequency generations from periodically
poled lithium niobate”, Optics Express 16, 6471-6478, (2008).

[5] P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting
dipole antennas,” IEEE J. Quantum Electron. 24, 255-256, (1988).

[6] X.-C., B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond
electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56,
1011-1013, (1990).

[7] J. Faist et al. , “Quantum Cascade Laser,” Science 264 553-556, (1994).

[8] S. J. Smith and E. M. Purcell, “Visible Light from Localized Surface Charges Moving across a Grating,” Phys Rev 92, 1069 (1953), 10.1103/PhysRev.92.1069

[9] K. Floettmann, ASTRA User Manual, http://www.desy.de/~mpyflo/Astra_dokumentation/.

[10] L. Ludeking, ‘‘The MAGIC User’s Manual.’’

[11] D. Li, Z. Yang, K. Imasaki, and Gun-Sik Park, “Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation,” Phys. Rev. ST Accel. Beams 9, 040701 (2006)

[12] J. Gardelle, L. Courtois, P. Modin, and J. T. Donohue, “Observation of coherent Smith-Purcell radiation using an initially continuous flat beam,” Phys. Rev. ST Accel . Beams 12, 110701(2009)

[13]Yen-Chieh Huang, “Desktop megawatt superradiant free-electron laser at terahertz frequencies,” Appl. Phys. Lett. 96, 231503 (2010)

[14] J. M. Byrd, W. P. Leemans, A. Loftsdottir, B. Marcelis, Michael C. Martin, W. R. McKinney, F. Sannibale, T. Scarvie, and C. Steier, “Observation of Broadband Self-Amplified Spontaneous Coherent Terahertz Synchrotron Radiation in a Storage Ring,” Phys. Rev. Lett. 89, 224801(2002)

[15] M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, W. B. Peatman, U. Schade, G. Wüstefeld, and H.-W. Hübers, “Brilliant, Coherent Far-Infrared (THz) Synchrotron Radiation,” Phys. Rev. Lett. 90, 094801(2003)

[16] Mauro Mineo and Claudio Paoloni, Member, IEEE, “Corrugated Rectangular Waveguide Tunable Backward Wave Oscillator for Terahertz Applications,” IEEE Transactions on electron devices, Vol. 57, No. 6 (2010)

[17] G. P. Williams, “FAR-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser,” Rev. Sci. Instrum. 73, 1461 (2002)

[18] A. Gover, Phys. Rev. ST Accel. Beams 8, 030701 (2005).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *