|
References 1. Dillon SC, Dorman CJ. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol. 2010;8: 185–195. doi:10.1038/nrmicro2261 2. Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol. 2008;43: 393–418. doi:10.1080/10409230802528488 3. Luijsterburg MS, Noom MC, Wuite GJL, Dame RT. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: A molecular perspective. J Struct Biol. 2006;156: 262–272. doi:10.1016/j.jsb.2006.05.006 4. Sandman K, Reeve JN. Archaeal chromatin proteins: different structures but common function? Curr Opin Microbiol. 2005;8: 656–661. doi:10.1016/j.mib.2005.10.007 5. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389: 251–260. 6. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol. 2002;319: 1097–1113. doi:10.1016/S0022-2836(02)00386-8 7. Paull TT, Haykinson MJ, Johnson RC. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 1993;7: 1521–1534. 8. Murphy FV, Sweet RM, Churchill ME. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. EMBO J. 1999;18: 6610– 6618. 9. Pennings S, Meersseman G, Bradbury EM. Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proc Natl Acad Sci U S A. 1994;91: 10275– 10279. 77 10. Vignali M, Workman JL. Location and function of linker histones. Nat Struct Biol. 1998;5: 1025–1028. doi:10.1038/4133 11. Swinger KK, Lemberg KM, Zhang Y, Rice PA. Flexible DNA bending in HUDNA cocrystal structures. EMBO J. 2003;22: 3749–60. doi:10.1093/emboj/cdg351 12. Dame RT, Goosen N. HU: promoting or counteracting DNA compaction? FEBS Lett. 2002; 1–6. 13. Swinger KK, Rice PA. IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol. 2004;14: 28–35. 14. Rice PA, Yang S, Mizuuchi K, Nash HA. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. 1996;87: 1295–1306. 15. Skoko D, Yoo D, Bai H, Schnurr B, Yan J, McLeod SM, et al. Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis. J Mol Biol. 2006;364: 777–98. doi:10.1016/j.jmb.2006.09.043 16. Stella S, Cascio D, Johnson RC. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. 2010;24: 814–826. doi:10.1101/gad.1900610 17. Dame RT, Wyman C, Goosen N. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res. 2000;28: 3504–10. doi:10.1093/nar/28.18.3504 18. Wang W, Li G-W, Chen C, Xie XS, Zhuang X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science. 2011;333: 1445–1449. doi:10.1126/science.1204697 19. de los Rios S and Perona JJ. Structure of the Escherichia coli leucine-responsive regulatory protein Lrp reveals a novel octameric assembly. J. Mol. Biol.2007;366: 1589–602. 20. Tapias A, López G, Ayora S. Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein which bridges DNA. Nucleic Acids Res. 2000;28: 552–559. 78 21. Reeve JN, Bailey KA, Li W, Marc F, Sandman K, Soares DJ. Archaeal histones: structures, stability and DNA binding. Biochem Soc Trans. 2004;32: 227–230. doi:10.1042/BST0320227 22. Decanniere K, Babu AM, Sandman K, Reeve JN, Heinemann U. Crystal structures of recombinant histones HMfA and HMfB from the hyperthermophilic archaeon Methanothermus fervidus. J Mol Biol. 2000;303: 35–47. 23. Maruyama H, Harwood JC, Moore KM, Paszkiewicz K, Durley SC, Fukushima H, et al. An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis. EMBO Rep. 2013;14: 711–717. doi:10.1038/embor.2013.94 24. Henneman B, Dame RT. Archaeal histones: dynamic and versatile genome architects. AIMS Microbiol. 2015;1: 72–81. doi:10.3934/microbiol.2015.1.72 25. Paquet F, Delalande O, Goffinont S, Culard F, Loth K, Asseline U, Castaing B1, Landon C. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea. PLOS ONE 2014; 18;9(2):e88809. doi: 10.1371/journal.pone.0088809. 26. Driessen RPC, Dame RT. Nucleoid-associated proteins in Crenarchaea. Biochem Soc Trans. 2011;39: 116–121. 27. Wardleworth BN, Russell RJM, Bell SD, Taylor GL, White MF. Structure of Alba: An archaeal chromatin protein modulated by acetylation. EMBO J. 2002;21: 4654– 4662. doi:10.1093/emboj/cdf465 28. Chou CC, Lin TW, Chen CY, Wang AH-J. Crystal structure of the hyperthermophilic archaeal DNA-binding protein Sso10b2 at a resolution of 1.85 Angstroms. J Bacteriol. 2003;185: 4066–4073. doi:10.1128/JB.185.14.4066- 4073.2003 29. Laurens N, Driessen RPC, Heller I, Vorselen D, Noom MC, Hol FJH, et al. Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nat Commun. 2012;3: 1328. doi:10.1038/ncomms2330 30. Xuan J, Feng Y. The archaeal Sac10b protein family: conserved proteins with divergent functions. Curr Protein Pept Sci. 2012;13: 258–266. 31. Driessen RPC, Lin S-N, Waterreus W-J, van der Meulen ALH, van der Valk RA, Laurens N, et al. Diverse architectural properties of Sso10a proteins: Evidence for 79 a role in chromatin compaction and organization. Sci Rep. 2016;6: 29422. doi:10.1038/srep29422 32. Edmondson SP, Kahsai MA, Gupta R, Shriver JW. Characterization of Sac10a, a hyperthermophile DNA-binding protein from Sulfolobus acidocaldarius. Biochemistry (Mosc). 2004;43: 13026–13036. doi:10.1021/bi0491752 33. Robinson H, Gao YG, McCrary BS, Edmondson SP, Shriver JW, Wang AH. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature. 1998;392: 202–205. doi:10.1038/32455 34. Gao YG, Su SY, Robinson H, Padmanabhan S, Lim L, McCrary BS, et al. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat Struct Biol. 1998;5: 782–786. doi:10.1038/1822 35. Chen CY, Ko TP, Lin TW, Chou CC, Chen CJ, Wang AH-J. Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d. Nucleic Acids Res. 2005;33: 430–438. doi:10.1093/nar/gki191 36. Feng Y, Yao H, Wang J. Crystal structure of the crenarchaeal conserved chromatin protein Cren7 and double-stranded DNA complex. Protein Sci. 2010;19: 1253– 1257. doi:10.1002/pro.385 37. Driessen RPC, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar UD, et al. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Res. 2013;41: 196–205. doi:10.1093/nar/gks1053 38. Oppermann UCT, Knapp S, Bonetto V, Ladenstein R, Jörnvall H. Isolation and structure of repressor-like proteins from the archaeon Sulfolobus solfataricus. FEBS Lett. 1998;432: 141–144. doi:10.1016/S0014-5793(98)00848-5 39. Hsu CH, Wang AH-J. The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res. 2011;39: 6764–6774. doi:10.1093/nar/gkr283 40. Lurz R, Grote M, Dijk J, Reinhardt R, Dobrinski B. Electron microscopic study of DNA complexes with proteins from the Archaebacterium Sulfolobus acidocaldarius. EMBO J. 1986;5: 3715–3721. 80 41. Vaughn JL, Feher V, Naylor S, Strauch MA, Cavanagh J. Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator abrB. Nat Struct Biol. 2000;7: 1139–1146. doi:10.1038/81999 42. Zorzini V, Buts L, Schrank E, Sterckx YGJ, Respondek M, Engelberg-Kulka H, et al. Escherichia coli antitoxin MazE as transcription factor: Insights into MazEDNA binding. Nucleic Acids Res. 2015;43: 1241–1256. doi:10.1093/nar/gku1352 43. Lee CC, Maestre-Reyna M, Hsu KC, Wang HC, Liu CI, Jeng WY, et al. Crowning proteins: Modulating the protein surface properties using crown ethers. Angew Chem Int Ed Engl. 2014;53: 13054–13058. doi:10.1002/anie.201405664 44. Crane-Robinson C, Dragan AI, Privalov PL. The extended arms of DNA-binding domains: a tale of tails. Trends Biochem Sci. 2006;31: 547–552. doi:10.1016/j.tibs.2006.08.006 45. Albright RA, Matthews BW. How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch. Proc Natl Acad Sci U S A. 1998;95: 3431–3436. doi:10.1073/pnas.95.7.3431 46. Beamer LJ, Pabo CO. Refined 1.8 Å crystal structure of the λ repressor-operator complex. J Mol Biol. 1992;227: 177–196. doi:10.1016/0022-2836(92)90690-L 47. Clarke ND, Beamer LJ, Goldberg HR, Berkower C, Pabo CO. The DNA binding arm of lambda repressor: critical contacts from a flexible region. Science. 1991;254: 267–270. 48. Albright RA, Matthews BW. Crystal structure of lambda-Cro bound to a consensus operator at 3.0 Å resolution. J Mol Biol. 1998;280: 137–151. doi:10.1006/jmbi.1998.1848 49. Hubbard AJ, Bracco LP, Eisenbeis SJ, Gayle RB, Beaton G, Caruthers MH. Role of the Cro repressor carboxy-terminal domain and flexible dimer linkage in operator and nonspecific DNA binding. Biochemistry (Mosc). 1990;29: 9241–9249. 50. McAfee JG, Edmondson SP, Zegar I, Shriver JW. Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: Fluorescence and circular dichroism studies. Biochemistry (Mosc). 1996;35: 4034–4045. doi:10.1021/bi952555q 51. Bock C-T, Franz S, Zentgraf H, Sommerville J. Electron Microscopy of Biomolecules. Encyclopedia of Molecular Cell Biology and Molecular Medicine. 81 Wiley-VCH Verlag GmbH & Co. KGaA; 2006. Available: http://dx.doi.org/10.1002/3527600906.mcb.200300057 52. Chen S, Vojtechovsky J, Parkinson GN, Ebright RH, Berman HM. Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: DNA binding specificity based on energetics of DNA kinking. J Mol Biol. 2001;314: 63– 74. doi:10.1006/jmbi.2001.5089 53. Chen C-Y, Chang C-C, Yen C-F, Chiu MT-K, Chang W-H. Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis. Proc Natl Acad Sci U S A. 2009;106: 127–132. doi:10.1073/pnas.0811689106 54. Blair RH, Goodrich JA, Kugel JF. Using FRET to monitor protein-induced DNA bending: the TBP-TATA complex as a model system. Methods Mol Biol Clifton NJ. 2013;977: 203–215. doi:10.1007/978-1-62703-284-1_16 55. Lnenicek-Allen M, Read CM, Crane-Robinson C. The DNA bend angle and binding affinity of an HMG box increased by the presence of short terminal arms. Nucleic Acids Res. 1996;24: 1047–1051. 56. Schultz SC, Shields GC, Steitz TA. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science. 1991;253: 1001–1007. doi:10.1126/science.1653449 57. Napoli AA, Lawson CL, Ebright RH, Berman HM. Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: Recognition of pyrimidine-purine and purine-purine steps. J Mol Biol. 2006;357: 173–183. doi:10.1016/j.jmb.2005.12.051 58. Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH. Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol. 2004;14: 10–20. doi:10.1016/j.sbi.2004.01.012 59. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276: 307–326. doi:doi: 10.1016/s0076- 6879(97)76066-x 60. Schneider TR, Sheldrick GM. Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr. 2002;58: 1772–1779. doi:10.1107/S0907444902011678 82 61. Pannu NS, Waterreus W-JJ, Skubák P, Sikharulidze I, Abrahams JP, de Graaff RAG. Recent advances in the CRANK software suite for experimental phasing. Acta Crystallogr D Biol Crystallogr. 2011;67: 331–337. doi:10.1107/S0907444910052224 62. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67: 235–242. doi:10.1107/S0907444910045749 63. Cowtan K, Main P. Miscellaneous algorithms for density modification. Acta Crystallogr D Biol Crystallogr. 1998;54: 487–493. doi:10.1107/S0907444997011980 64. Cowtan K. Modified phased translation functions and their application to molecular-fragment location. Acta Crystallogr D Biol Crystallogr. 1998;54: 750– 756. doi:10.1107/S0907444997016247 65. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D. 2010;66: 486–501. doi:10.1107/S0907444910007493 66. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D. 2011;67: 355–367. doi:10.1107/S0907444911001314 67. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40: 658–674. doi:10.1107/S0021889807021206 68. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66: 12–21. doi:10.1107/S0907444909042073 69. Rossi AM, Taylor CW. Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc. 2011;6: 365–387. 70. Griffith JD, Christiansen G. Electron microscope visualization of chromatin and other DNA-protein complexes. Annu Rev Biophys Bioeng. 1978;7: 19–35. doi:10.1146/annurev.bb.07.060178.000315 71. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9: 671–675. doi:10.1038/nmeth.2089 83 72. MacKerell ADJ, Banavali N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers. 2000;56: 257–265. doi:10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W 73. Hieb AR, Halsey WA, Betterton MD, Perkins TT, Kugel JF, Goodrich JA. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability. J Mol Biol. 2007;372: 619–632. doi:10.1016/j.jmb.2007.06.061 |