帳號:guest(18.116.62.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉大瑋
作者(外文):Yeh, Da Wei
論文名稱(中文):探討COMMD1經由微核糖核酸205的負向調控以形成癌細胞內擴大發炎和幹性屬性的正向循環機制
論文名稱(外文):Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells
指導教授(中文):莊宗顯
陳令儀
指導教授(外文):Chuang, Tsung Hsien
Chen, Linyi
口試委員(中文):羅正汎
徐立中
林文傑
口試委員(外文):Lo, Jeng Fan
Hsu, Li Chung
Lin, Wen Jye
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:100080836
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:85
中文關鍵詞:發炎癌幹細胞微核醣核酸205
外文關鍵詞:inflammationcancer stem cellmicroRNA-205COMMD1NF-κB
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
研究證據顯示在癌細胞中NF-κB的持續活化,具有促進發炎、擴增癌幹細胞族群、促進腫瘤進展的作用。反之,最近的研究也顯示癌幹細胞中,因持續的NF-κB活化而有較高的發炎現象。此一作用可以促進發炎媒介物的表現與分泌,進而增強發炎作用和癌幹細胞特性,但是,這過程中的作用機制尚未清楚。在本研究中,我們使用生物資訊分析,發現在培養SAS口腔癌細胞株以形成癌幹細胞特性較高的tumorsphere的細胞中,伴隨NF-κB調控的發炎基因表現的上升;然而,COMMD1,一個腫瘤壞死因子α,介白素1β和類鐸受體訊號傳遞中,降低NF-κB活性的負調控分子的表現隨之下降。並行研究SAS口腔癌細胞株和來自人的和老鼠的H460和D121非小細胞肺癌細胞株,我們發現微核醣核酸205會調控COMMD1的三端非轉譯區,進而降低COMMD1訊息核糖核酸和蛋白質的表現。同時,微核醣核酸205的表現伴隨幹細胞特性增加而上升,並且受到NF-κB調控。在癌細胞中表現COMMD1可以促進RelA (p65)降解,抑制發炎刺激物引起的NF-κB活化,發炎性細胞激素的生成,和白血球的趨化移動。在癌細胞中以慢病毒感染產生shRNA,降低COMMD1的表現,則會增加幹細胞特性相關基因的表現,促進tumorsphere形成,以及增加細胞的不依賴貼附生長的轉形能力。腫瘤動物實驗顯示,降低COMMD1表現的癌細胞在老鼠體內有較高的腫瘤發生率和較快的腫瘤生長速度。並且發現由降低COMMD1表現的癌細胞所產生的腫瘤組織中,增加NF-κB的活化,發炎性和幹細胞特性相關基因的表現,並且具有較多的CD11b+發炎細胞和CD117+ 類幹細胞腫瘤細胞。這些研究結果顯示癌細胞中miR-205-COMMD1-NF-κB的正回饋途徑,可能是一項造成癌幹細胞中發炎並增強幹細胞特性的機制,進而促進腫瘤惡化。
Accumulating evidence indicates that sustained activation of NF-κB in cancer cells contributes to inflammation, expansion of tumor-initiating cancer stem cells (CSCs), and tumor progression. On the other hand, recent studies reveal that CSCs exhibit increased inflammation due to constitutive NF-κB activation, which is able to elevate expression and release of pro-inflammatory mediators into the tumor microenvironment and further increase stemness and inflammatory conditions in cancer cells. Nevertheless, the underlying molecular control is still ill-defined. In this study, we used bioinformatic analysis to show the upregulation of NF-κB-regulated proinflammatory genes and downregulation of Copper Metabolism (Murr1) Domain-containing 1 (COMMD1) during the enrichment of stemness in SAS head and neck squamous-cell carcinoma (HNSCC) cells. The 3′-UTR of COMMD1 mRNA consists of miR-205 target site. Parallel studies with SAS, human H460 and mouse D121 non–small-cell lung cancer cells indicated that miR-205 reduces COMMD1 expression, and the expression of miR-205 is upregulated upon NF-κB activation in stemness enriched cancer cells. COMMD1 effectively restrained inflammatory stimuli-induced NF-κB activation, cytokine production, as well as leukocytes migration. The lentiviral shRNA-mediated downregulation of COMMD1 in cancer cells increased the expression of stemness-associated genes, sphere-forming capacity, and potential for anchorage-independent growth. Moreover, study with cancer animal model showed that knockdown of COMMD1 enhances tumorigenesis and tumor growth. Tumors derived from COMMD1-knockdown cells displayed increased NF-κB activation and expression of inflammatory- and stemness-associated genes. In addition, expanded population of CD11b+ tumor-associated leukocytes and CD117+ stemness-enriched cancer cells were detected in these tumors. Overall, these results demonstrate that the miR-205-COMMD1-NF-κB axis forming a positive feedback loop for amplifying inflammatory- and stemness-associated properties in cancer cells is likely a underlying molecular mechanism for promoting the malignancy of tumors.
Table of Contents I
List of Figures V
List of Tables VIII
Abbreviations IX
Chinese abstract X
Abstract XII
Chapter 1 Introduction 1
1.1 Inflammation as a hallmark of tumor development 1
1.2 Tumor-initiating stem-like cells and cancer progression 2
1.3 Expansion of cancer stem cells due to activation of inflammatory signalings and NF-κB 3
1.4 Toll- like, IL-1β, and TNFα receptor signalings and inflammation 5
1.5 Negative regulators for maintaining homeostasis of inflammation 6
1.6 Ubiquitination in inflammatory signalings and activation of NF-κB and inflammation 7
1.7 Negative regulators of inflammatory signaling pathways that involve in the ubiquitination system 8
1.8 Structure and function of Copper metabolism gene MURR1-containing domain 1 (COMMD1) 11
1.9 MicroRNAs in inflammation and cancer development 14
Chapter 2 Materials and methods 15
2.1 Reagents and antibodies 15
2.2 Cell culture and enrichment of sphere-forming cancer cells 15
2.3 Bioinformatics analysis of microarray data, gene expression in tumor tissues, and miRNA target sites 16
2.4 Plasmid construction 16
2.5 Lentiviral shRNA, miR-205-sponge and precursor miR-205 construction 17
2.6 Lentiviral production and infection 17
2.7 Luciferase reporter assay 17
2.8 SDS-PAGE and immunoblot analysis 18
2.9 RT-qPCR analysis of gene and microRNA expression 18
2.10 Anchorage-independent growth assay 19
2.11 Macrophage recruitment assay 19
2.12 Flow cytometric analysis 20
2.13 In vivo tumorigenesis and tumor growth 20
2.14 Preparation of tumor single-cell suspension 20
2.15 Separation of CD117+ population from tumor single-cell suspension 21
2.16 Histological analysis 21
2.17 Statistical analysis 21
Chapter 3 Results 22
3.1 Elevated NF-κB activation and inflammation in stemness-enriched cancer cells 22
3.2 Identification of key regulators of NF-κB activation during enrichment for stemness 22
3.3 Downregulation of COMMD1 in stemness-enriched HNSCC cells and NSCLC cells 23
3.4 3’-UTR of COMMD1 mRNA contains miR-205 target site 23
3.5 Downregulation of COMMD1 by NF-κB-regulated miR-205 during enrichment for stemness 24
3.6 COMMD1 downregulation in cancer cells promotes inflammation 25
3.7 COMMD1 downregulation in cancer cells promotes macrophage recruitment 26
3.8 COMMD1 downregulation enhances stemness in cancer cells
3.9 COMMD1 downregulation enhances the transforming ability of cancer cells 27
3.10 COMMD1 downregulation promotes in vivo tumorigenicity and tumor growth 28
Chapter 4 Discussion 30
Chapter 5 References 34

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646-74.
2. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009; 30(7):1073-81.
3. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454:436-44.
4. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140:883-99.
5. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013; 13:759-71.
6. Gasparini C, Feldmann M. NF-kappaB as a target for modulating inflammatory responses. Curr Pharm Des. 2012; 18:5735-45.
7. Sarkar FH, Li Y, Wang Z, Kong D. NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol. 2008; 27:293-319.
8. DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012; 246:379-400.
9. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414:105-11.
10. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008; 8(10):755-68.
11. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell stem cell. 2012; 10:717-28.
12. Mertins SD. Cancer stem cells: a systems biology view of their role in prognosis and therapy. Anticancer Drugs. 2014; 25:353-67.
13. Colak S, Medema JP. Cancer stem cells--important players in tumor therapy resistance. The FEBS journal. 2014; 281:4779-91.
14. Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin. Cancer. Res. 2011; 17, 6125–6129.
15. Shigdar S, Li Y, Bhattacharya S, O'Connor M, Pu C, Lin J, et al. Inflammation and cancer stem cells. Cancer Lett. 2014; 345:271-8.
16. Zhou C, Liu J, Tang Y, Liang X. Inflammation linking EMT and cancer stem cells. Oral Oncol. 2012; 48:1068-75.
17. Jinushi M. Role of cancer stem cell-associated inflammation in creating pro-inflammatory tumorigenic microenvironments. Oncoimmunology. 2014; 3:e28862.
18. Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, et al. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 2008; 9, R83.
19. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun. 2011; 2:162.
20. Garner JM, Fan M, Yang CH, Du Z, Sims M, Davidoff AM, et al. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappaB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem. 2013; 288:26167-76.
21. Yamashina T, Baghdadi M, Yoneda A, Kinoshita I, Suzu S, Dosaka-Akita H, et al. Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells. Cancer Res. 2014; 74:2698-709.
22. Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013; 34:732-40.
23. Pistollato F, Giampieri F, Battino M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem Toxicol. 2015; 75:58-70.
24. Chefetz I, Alvero AB, Holmberg JC, Lebowitz N, Craveiro V, Yang-Hartwich Y, et al. TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell cycle. 2013; 12:511-21.
25. Liu WT, Jing YY, Yu GF, Han ZP, Yu DD, Fan QM, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett. 2015; 358:136-43.
26. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010; 70(24):10464-73.
27. Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012; 47(4):570-84.
28. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et Al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013; 152(1-2):25-38.
29. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest. 2014; 124(2):528-42.
30. Storci G, Sansone P, Mari S, D'Uva G, Tavolari S, Guarnieri T, et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol. 2010; 225(3):682-91.
31. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124(4):783-801.
32. Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci. 2008; 65:2964-78.
33. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009; 1:a001651.
34. Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013; 12:86.
35. Bibeau-Poirier A, Servant MJ. Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling. Cytokine. 2008; 43:359-67.
36. Harhaj EW, Dixit VM. Regulation of NF-κB by deubiquitinases. Immunol Rev. 2012; 246(1):107-24.
37. Zinngrebe J, Montinaro A, Peltzer N, Walczak H. Ubiquitin in the immune system. EMBO reports. 2014; 15:28-45.
38. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014; 20(11):1242-53.
39. Liew FY, Xu D, Brint EK, O'Neill LA. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005; 5(6):446-58.
40. Hoebe K, Jiang Z, Georgel P, Tabeta K, Janssen E, Du X, et al. TLR signaling pathways: opportunities for activation and blockade in pursuit of therapy. Curr Pharm Des. 2006; 12:4123-34.
41. Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, Wang JM. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol. 2007; 7:1271-85.
42. Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010; 2010. pii: 672395.
43. Murray PJ, Smale ST. Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nat Immunol. 2012; 13(10):916-24.
44. Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003; 424(6950):801-5.
45. Jono H, Lim JH, Chen LF, Xu H, Trompouki E, Pan ZK, et al. NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem. 2004; 279(35):36171-4.
46. Lee BC, Miyata M, Lim JH, Li JD. Deubiquitinase CYLD acts as a negative regulator for bacterium NTHi-induced inflammation by suppressing K63-linked ubiquitination of MyD88. Proc Natl Acad Sci U S A. 2016; 113(2):E165-71.
47. An J, Mo D, Liu H, Veena MS, Srivatsan ES, Massoumi R, Rettig MB. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell. 2008; 14(5):394-407.
48. Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang M, et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell. 2007; 13(5):705-16.
49. Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest. 2008; 118(5):1858-66.
50. Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll like receptors. Nat Immunol. 2004; 5:495–502.
51. Fearns C, Pan Q, Mathison JC, Chuang TH. Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding. J Biol Chem. 2006; 281:34592–600.
52. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, et al. Regulation of NFkappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell. 2003; 12(6):1413–1426.
53. Strebovsky J, Walker P, Lang R, Dalpke AH. Suppressor of cytokine signaling 1 (SOCS1) limits NFkappaB signaling by decreasing p65 stability within the cell nucleus. FASEB J. 2011; 25(3):863-74.
54. Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, Crack PJ, et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediatingMal degradation. Nat Immunol. 2006; 7(2):148–155.
55. Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T, et al. SOCS-1 participates in negative regulation of LPS responses. Immunity. 2002; 17(5):677-87.
56. Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007; 8:584–91.
57. Tanaka T, Shibazaki A, Ono R, Kaisho T. HSP70 mediates degradation of the p65 subunit of nuclear factor κB to inhibit inflammatory signaling. Sci Signal. 2014; 7(356):ra119.
58. Zhao W, Wang L, Zhang M, Yuan C, Gao C.E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages. J Immunol. 2012; 188(6):2567-74.
59. Hu MM, Xie XQ, Yang Q, Liao CY, Ye W, Lin H, et al. TRIM38 Negatively Regulates TLR3/4-Mediated Innate Immune and Inflammatory Responses by Two Sequential and Distinct Mechanisms. J Immunol. 2015; 195(9):4415-25.
60. Xue Q, Zhou Z, Lei X, Liu X, He B, Wang J, et al. TRIM38 negatively regulates TLR3-mediated IFN-β signaling by targeting TRIF for degradation. PLoS One. 2012; 7(10):e46825.
61. Hu MM, Yang Q, Zhang J, Liu SM, Zhang Y, Lin H, et al. TRIM38 inhibits TNF-α- and IL-1β-triggered NF-κB activation by mediating lysosome-dependent degradation of TAB2/3. Proc Natl Acad Sci U S A. 2014; 111(4):1509-14.
62. Zhou F, Zhang X, van Dam H, Ten Dijke P, Huang H, Zhang L. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J Biol Chem. 2012; 287(14):11002-10.
63. Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNF-α-induced cancer cell migration. Biochem J. 2012; 441(3):979-86.
64. Fan YH, Yu Y, Mao RF, Tan XJ, Xu GF, Zhang H, et al. USP4 targets TAK1 to downregulate TNF-α-induced NF-κB activation. Cell Death Differ. 2011; 18(10):1547-60.
65. Liang L, Fan Y, Cheng J, Cheng D, Zhao Y, Cao B, et al. TAK1 ubiquitination regulates doxorubicin-induced NF-κB activation. Cell Signal. 2013; 25(1):247-54.
66. Nabetani A, Hatada I, Morisaki H, Oshimura M, Mukai T. Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol Cell Biol. 1997; 17(2):789-98.
67. van De Sluis B, Rothuizen J, Pearson PL, van Oost BA, Wijmenga C. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet. 2002; 11(2):165-73.
68. Burstein E, Hoberg JE, Wilkinson AS, Rumble JM, Csomos RA, Komarck CM, et al. COMMD proteins, a novel family of structural and functional homologs of MURR1. J Biol Chem. 2005; 280(23):22222-32.
69. de Bie P, van de Sluis B, Burstein E, Duran KJ, Berger R, Duckett CS, Wijmenga C, Klomp LW. Characterization of COMMD protein-protein interactions in NF-kappaB signalling. Biochem J. 2006; 398(1):63-71.
70. Ganesh L, Burstein E, Guha-Niyogi A, Louder MK, Mascola JR, Klomp LW, et al. The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature. 2003; 426(6968):853-7.
71. Taura M, Kudo E, Kariya R, Goto H, Matsuda K, Hattori S, et al. COMMD1/Murr1 reinforces HIV-1 latent infection through IκB-α stabilization. J Virol. 2015; 89(5):2643-58.
72. Maine GN, Mao X, Komarck CM, Burstein E. COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J. 2007; 26:436-47.
73. Maine GN, Burstein E. COMMD proteins and the control of the NF kappa B pathway. Cell cycle. 2007; 6:672-6.
74. Starokadomskyy P, Gluck N, Li H, Chen B, Wallis M, Maine GN, et al. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling. J Clin Invest. 201; 123(5):2244-56.
75. Solban N, Jia HP, Richard S, Tremblay S, Devlin AM, Peng J, et al. HCaRG, a novel calcium-regulated gene coding for a nuclear protein, is potentially involved in the regulation of cell proliferation. J Biol Chem. 2000; 275(41):32234-43.
76. Burstein E, Ganesh L, Dick RD, van De Sluis B, Wilkinson JC, Klomp LW, et al. A novel role for XIAP in copper homeostasis through regulation of MURR1. EMBO J. 2004; 23(1):244-54.
77. Lian M, Zheng X. HSCARG regulates NF-kappaB activation by promoting the ubiquitination of RelA or COMMD1. J Biol Chem. 2009; 284(27):17998-8006.
78. Huang Y, Wu M, Li HY. Tumor suppressor ARF promotes non-classic proteasome-independent polyubiquitination of COMMD1. J Biol Chem. 2008; 283(17):11453-60.
79. O'Hara A, Simpson J, Morin P, Loveridge CJ, Williams AC, Novo SM, et al. p300-mediated acetylation of COMMD1 regulates its stability, and the ubiquitylation and nucleolar translocation of the RelA NF-κB subunit. J Cell Sci. 2014; 127(Pt 17):3659-65.
80. Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW, et al. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes Dev. 2009; 23(7):849-61.
81. van de Sluis B, Muller P, Duran K, Chen A, Groot AJ, Klomp LW, et al. Increased activity of hypoxia-inducible factor 1 is associated with early embryonic lethality in Commd1 null mice. Mol Cell Biol. 2007; 27(11):4142-56.
82. van de Sluis B, Groot AJ, Vermeulen J, van der Wall E, van Diest PJ, Wijmenga C, et al. COMMD1 Promotes pVHL and O2-Independent Proteolysis of HIF-1alpha via HSP90/70. PLoS One. 2009; 4(10):e7332.
83. van de Sluis B, Mao X, Zhai Y, Groot AJ, Vermeulen JF, van der Wall E, et al. COMMD1 disrupts HIF-1alpha/beta dimerization and inhibits human tumor cell invasion. J Clin Invest. 2010; 120:2119-30.
84. Bartuzi P, Wijshake T, Dekker DC, Fedoseienko A, Kloosterhuis NJ1, Youssef SA, et al. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim Biophys Acta. 2014;1842(11):2257-65.
85. Li H, Chan L, Bartuzi P, Melton SD, Weber A, Ben-Shlomo S, et al. Copper metabolism domain-containing 1 represses genes that promote inflammation and protects mice from colitis and colitis-associated cancer. Gastroenterology. 2014; 147:184-95.e3.
86. Maine GN, Burstein COMMD proteins: COMMing to the scene. E. Cell Mol Life Sci. 2007; 64(15):1997-2005.
87. Bartuzi P, Hofker MH, van de Sluis B. Tuning NF-kappaB activity: a touch of COMMD proteins. Biochim Biophys Acta. 2013; 1832:2315-21.
88. McDonald FJ. COMMD1 and ion transport proteins: what is the COMMection? Am J Physiol Cell Physiol. 2013; 305(2):C129-30.
89. Zoubeidi A, Ettinger S, Beraldi E, Hadaschik B, Zardan A, Klomp LW, et al. Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells. Mol Cancer Res. 2010; 8:119-30.
90. Phillips-Krawczak CA, Singla A, Starokadomskyy P, Deng Z, Osborne DG, Li H, et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell. 2015; 26(1):91-103.
91. Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun. 2016; 7:10961.
92. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007; 23:175-205.
93. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011; 12:99-110.
94. O'Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012; 30:295-312.29.
95. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 2008; 14(13):4085-95.
96. Lo JF, Yu CC, Chiou SH, Huang CY, Jan CI, Lin SC, et al. The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Res. 2011; 71:1912-23.
97. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012; 33:1126-33.
98. Garofalo M, Croce CM. Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev. 2015; 81:53-61.
99. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008; 36:D149-53.
100. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010; 11:R90.
101. Cai J, Fang L, Huang Y, Li R, Yuan J, Yang Y, et al. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res. 2013; 73:5402-15.
102. McIntyre KW, Shuster DJ, Gillooly KM, Dambach DM, Pattoli MA, Lu P, et al. A highly selective inhibitor of I kappa B kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum. 2003; 48:2652-9.
103. Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. FASEB J. 2011; 25:2700-10.
104. Park GY, and Christman JW. Nuclear factor kappa B is a promising therapeutic target in inflammatory lung disease. Curr. Drug Targets. 2006; 7: 661-668.
105. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 2009; 27: 693-733.
106. Qin AY, Zhang XW, Liu L, Yu JP, Li H, Wang SZ, et al. MiR-205 in cancer: an angel or a devil? Eur J Cell Biol. 2013; 92:54-60.
107. Orang AV, Safaralizadeh R, Hosseinpour Feizi MA. Insights into the diverse roles of miR-205 in human cancers. Asian Pac J Cancer Prev. 2014; 15:577-83.
108. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem. 2011; 286:16606-14.
109. Majid S, Saini S, Dar AA, Hirata H, Shahryari V, Tanaka Y, et al. MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res. 2011; 71:2611-21.
110. Chao CH, Chang CC, Wu MJ, Ko HW, Wang D, Hung MC, et al. MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest. 2014; 124:3093-106.
111. Yin WZ, Li F, Zhang L, Ren XP, Zhang N, Wen JF. Down-regulation of microRNA-205 promotes gastric cancer cell proliferation. Eur Rev Med Pharmacol Sci. 2014; 18:1027-32.
112. Greene SB, Gunaratne PH, Hammond SM, Rosen JM. A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci. 2010; 123:606-18.
113. Vilquin P, Donini CF, Villedieu M, Grisard E, Corbo L, Bachelot T, et al. MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Res. 2015; 17:13.
114. Karaayvaz M, Zhang C, Liang S, Shroyer KR, Ju J. Prognostic significance of miR-205 in endometrial cancer. PLoS One. 2012; 7:e35158.
115. Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell cycle. 2012; 11:785-96.
116. Li J, Li L, Li Z, Gong G, Chen P, Liu H, et al. The role of miR-205 in the VEGF-mediated promotion of human ovarian cancer cell invasion. Gynecol Oncol. 2015; 137:125-33.
117. Lei L, Huang Y, Gong W. miR-205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN. Oncol Rep. 2013; 30:2897-902.
118. Larzabal L, de Aberasturi AL, Redrado M, Rueda P, Rodriguez MJ, Bodegas ME, et al. TMPRSS4 regulates levels of integrin alpha5 in NSCLC through miR-205 activity to promote metastasis. Br J Cancer. 2014; 110:764-74.
119. Liu J, Xu C, Hsu LC, Luo Y, Xiang R, Chuang TH. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol Immunol. 2010; 47:1083-90.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *