|
1. Fail, M., L. Xu, M.M. Wald, and V.G. Coronado, Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002-2006. 2010. 2. Vital, M., Traumatic Brain Injury: Hope Through Research. 2002. 3. O'Connell, K.M. and M.T. Littleton-Kearney, The Role of Free Radicals in Traumatic Brain Injury. Biological Research For Nursing, 2013. 15(3): p. 253-263. 4. Lin, J.W., S.H. Tsai, W.C. Tsai, W.T. Chiu, S.F. Chu, C.M. Lin, C.M. Yang, and C.C. Hung, Survey of traumatic intracranial hemorrhage in Taiwan. Surgical Neurology, 2006. 66 Suppl 2: p. S20-25. 5. Chiu, W.T., K.H. Yeh, Y.C. Li, Y.H. Gan, H.Y. Chen, and C.C. Hung, Traumatic brain injury registry in Taiwan. Neurology Research, 1997. 19: p. 261-264. 6. Kerman, M., M. Kanter, K.K. Coskun, M. Erboga, and A. Gurel, Neuroprotective effects of caffeic acid phenethyl ester on experimental traumatic brain injury in rats. J Mol Histol, 2012. 43(1): p. 49-57. 7. Ates, O., S. Cayli, E. Altinoz, I. Gurses, N. Yucel, M. Sener, A. Kocak, and S. Yologlu, Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem, 2007. 294(1-2): p. 137-144. 8. Itoh, T., M. Imano, S. Nishida, M. Tsubaki, N. Mizuguchi, S. Hashimoto, A. Ito, and T. Satou, (-)-Epigallocatechin-3-gallate increases the number of neural stem cells around the damaged area after rat traumatic brain injury. J Neural Transm, 2012. 119(8): p. 877-890. 9. Wilkins, L.W., Anatomy & Physiology Made Incredibly Visual! 2009. 10. Institute, P.E. TBI reference summary. 1995-2012 10/23/2012; Available from: www.X-Plain.com. 11. Liao, K.H., C.K. Chang, H.C. Chang, K.C. Chang, C.F. Chen, T.Y. Chen, C.W. Chou, W.Y. Chung, Y.H. Chiang, K.S. Hong, S.H. Hsiao, Y.H. Hsu, H.L. Huang, S.C. Huang, C.C. Hung, S.S. Kung, K.N. Kuo, K.H. Li, J.W. Lin, T.G. Lin, C.M. Lin, C.F. Su, M.T. Tsai, S.H. Tsai, Y.C. Wang, T.Y. Yang, K.F. Yu, W.T. Chiu, and F. Brain Trauma, Clinical practice guidelines in severe traumatic brain injury in Taiwan. Surgical Neurology, 2009. 72 Suppl 2: p. S66-73; discussion S73-74. 12. Gilgun-Sherki, Y., Z. Rosenbaum, E. Melamed, and D. Offen, Antioxidant therapy in acute central nervous system injury: Current state. Pharmacological Reviews, 2002. 54: p. 271-284. 13. Faraci, F., Reactive oxygen species: influence on cerebral vascular tone. Journal of Applied Physiology, 2006. 100: p. 739-743. 14. Gahm, C., S. Holmin, and T. Mathiesen, Nitric oxide synthase expression after human brain contusion. Neurosurgery, 2002. 50: p. 1319-1326. 15. Beckman, J. and W. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. American Journal of Physiology, 1996. 271: p. C1424-C1437. 16. Besson, V., I. Margaill, M. Plotkine, and C. Marchand-Verrecchia, Deleterious activation of poly(ADP-ribose)polymerase-1 in brain after in vivo oxidative stress. Free Radical Research, 2003. 37: p. 1201-1208. 17. Ansari, M.A., K.N. Roberts, and S.W. Scheff, Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biology & Medicine, 2008. 45(4): p. 443-452. 18. Cherian, L., J. Goodman, and C. Robertson, Brain nitric oxide changes after controlled cortical impact injury in rats. Journal of Neurophysiology, 2000. 83: p. 2171-2178. 19. Park, C.O. and H.G. Yi, Apoptotic change and NOS activity in the experimental animal diffuse axonal injury model. Yonsei Medical Journal, 2001. 42: p. 518-526. 20. Xiong, Y., F.S. Shie, J. Zhang, C.P. Lee, and Y.S. Ho, Prevention of mitochondrial dysfunction in post-traumatic mouse brain by superoxide dismutase. Journal of Neurochemistry, 2005. 95(3): p. 732-744. 21. Huttemann, M., I. Lee, C.W. Kreipke, and T. Petrov, Suppression of the inducible form of nitric oxide synthase prior to traumatic brain injury improves cytochrome c oxidase activity and normalizes cellular energy levels. Neuroscience, 2008. 151(1): p. 148-154. 22. Deng, Y., B.M. Thompson, X. Gao, and E.D. Hall, Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Experimental Neurology, 2007. 205(1): p. 154-165. 23. Halliwell, B. and S. Chirico, Lipid peroxidation: Its mechanism, measurement and significance. American Journal of Clinical Nutrition, 1993. 57: p. 715S-725S. 24. DeWitt, D., B. Mathew, J. Chaisson, and D. Prough, Peroxynitrite reduces vasodilatory responses to reduced intravascular pressure, calcitonin gene-related peptide, and cromakalim in isolated middle cerebral arteries. Journal of Cerebral Blood Flow and Metabolism, 2001. 21: p. 253-261. 25. Brzezinska, A., D. Gebremedhin, W. Chilian, B. Kalyanaraman, and S. Elliott, Peroxynitrite reversibly inhibits Ca2+-activated K+ channels in rat cerebral artery smooth muscle cells. American Journal of Physiology Heart and Circulatory Physiology, 2000. 278: p. H1883-H1890. 26. Petrov, T. and J. Rafols, Acute alterations of endothelin-1 and iNOS expression and control of the brain microcirculation after head trauma. Neurological Research, 2001. 23: p. 139-143. 27. Erdinc¸ler, P., S. Tu¨zgen, U. Erdinc¸ler, E. Og˘uz, A. Korpinar, N. Ciplak, and C. Kuday, Influence of aging on bloodbrain-barrier permeability and free radical formation following experimental brain cold injury. Acta Neurochirurgica, 2002. 144: p. 195-200. 28. Jayakumar, A., R. Rao, K. Panickar, M. Moriyama, P. Reddy, and M. Norenberg, Trauma-induced cell swelling in cultured astrocytes. Journal of Neuropathology & Experimental Neurology, 2008. 67: p. 417-427. 29. Morita-Fujimura, Y., M. Fujimura, Y. Gasche, J. Copin, and P. Chan, Overexpression of copper and zinc superoxide dismutase in transgenic mice prevents the induction and activation of matrix metalloproteinases after cold injury-induced brain trauma. Journal of Cerebral Blood Flow and Metabolism, 2000. 20: p. 130-138. 30. Cederberg, D. and P. Siesjo, What has inflammation to do with traumatic brain injury? Child's Nervous System, 2010. 26(2): p. 221-226. 31. Dohi, K., H. Ohtaki, T. Nakamachi, S. Yofu, K. Satoh, K. Miyamoto, D. Song, S. Tsunawaki, S. Shioda, and T. Aruga, Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. Journal of Neuroinflammation, 2010. 7: p. 41. 32. Yi, J.H. and A.S. Hazell, Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochemistry International, 2006. 48(5): p. 394-403. 33. Camacho, A. and L. Massieu, Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Archives of Medical Research, 2006. 37(1): p. 11-18. 34. Srinivasan, M., A.R. Sudheer, and V.P. Menoe, Ferulic acid: therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition, 2007. 40: p. 92-100. 35. Hosoda, A., Y. Ozaki, A. Kashiwada, M. Mutoh, K. Wakabayashi, K. Mizuno, E. Nomura, and H. Taniguchi, Syntheses of ferulic acid derivatives and their suppressive effects on cyclooxygenase-2 promoter activity. Bioorganic & Medicinal Chemistry, 2002. 10(4): p. 1189-1196. 36. Ou, L., L.Y. Kong, X.M. Zhang, and M. Niwa, Oxidation of ferulic acid by Momordica charantia peroxidase and related anti-inflammation activity changes. Biological and Pharmaceutical Bulletin 2003. 26(11): p. 1511-1516. 37. Sakai, S., H. Ochiai, K. Nakajima, and K. Terasawa, Inhibitory effect of ferulic acid on macrophage inflammatory protein-2 production in a murine macrophage cell line, RAW264.7. Cytokine, 1997. 9(4): p. 242-248. 38. Khanduja, K.L., P.K. Avti, S. Kumar, N. Mittal, K.K. Sohi, and C.M. Pathak, Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a Bcl-2 independent mechanism. Biochim Biophys Acta, 2006. 1760(2): p. 283-289. 39. Sultana, R., A. Ravagna, H. Mohmmad-Abdul, V. Calabrese, and D.A. Butterfield, Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. Journal of Neurochemistry, 2005. 92(4): p. 749-758. 40. Sultana, R., Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders. Biochim Biophys Acta, 2012. 1822(5): p. 748-752. 41. Ruel-Gariepy, E. and J.C. Leroux, In situ-forming hydrogels--review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 58(2): p. 409-426. 42. Ono, K., Y. Saito, H. Yura, K. Ishikawa, A. Kurita, T. Akaike, and M. Ishihara, Photocrosslinkable chitosan as a biological adhesive. Journal of Biomedical, 2000. 49: p. 289–295. 43. Burkoth, A.K. and K.S. Anseth, A review of photocrosslinked polyanhydrides:: in situ forming degradable networks. Biomaterials, 2000. 21: p. 2395-2404. 44. Rowley, J.A., G. Madlambayan, and D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999. 20(1): p. 45-53. 45. Kuo, K.C. and P.X. Ma, Ionically crosslinked alginate hydrogels as sca!olds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22: p. 511-521. 46. Gutowska, A., B. Jeong, and M. Jasionowski, Injectable gels for tissue engineering. Anat Rec, 2001. 263(4): p. 342-349. 47. Chenite, A., C. Chaput, D. Wang, C. Combes, M.D. Buschmann, C.D. Hoemann, J.C. Leroux, B.L. Atkinson, F. Binette, and A. Selmani, Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000. 21: p. 2155-2161. 48. Ta, H.T., C.R. Dass, and D.E. Dunstan, Injectable chitosan hydrogels for localised cancer therapy. J Control Release, 2008. 126(3): p. 205-216. 49. Flory, P.J., Principles of polyer chemistry. 1953, Ithaca, NY: Cornell University Press. 50. Mortimer, S., A.J. Ryan, and J.L. Stanford, Rheological behavior and gel-point determination for a model Lewis acid- initiated chain growth epoxy resin. Macromolecules, 2001. 34: p. 2973-2980. 51. Takasu, N., The Changes of the Lysosomal Enzyme Activities in Injured Brain Tissue. Arch Jap Chir, 1977. 46(4): p. 396-405. 52. Sato, K., Studies on Lysosomal Enzyme in the Cerebrospinal Fluid. Arch Jap Chir, 1978. 47(1): p. 42-53. 53. Ishiyama, M., Y. Miyazono, K. Sasamoto, Y. Ohkura, and K. Ueno, A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta, 1977. 44(7): p. 1299-1305. 54. Association, of, Medical, Laboratory, and Immunologists, Journal of immunological methods, Elsevier: Amsterdam,. p. v. 55. Roy, I., T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. Kaur, and P.N. Prasad, Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A, 2005. 102(2): p. 279-284. 56. Cheng, Y.H., S.H. Yang, and F.H. Lin, Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials, 2011. 32(29): p. 6953-6961. 57. Invitrogen, Click-iT® TUNEL Alexa Fluor® Imaging Assay. 2008. 58. Cheng, Y.H., S.H. Yang, W.Y. Su, Y.C. Chen, K.C. Yang, T.K. Cheng, S.C. Wu, and F.H. Lin, Thermosensitive Chitosan–Gelatin–Glycerol Phosphate Hydrogels as a Cell Carrier for Nucleus Pulposus Regeneration An In Vitro Study. Tissue Engineering Part A, 2010. 16: p. 695-703. 59. Ruel-Garie´pya, E., A. Cheniteb, C. Chaputb, S. Guirguisa, and J.C. Leroux, Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. International Journal of Pharmaceutics, 2000. 203: p. 89-98. 60. Ruel-Garie´pya, E., G. Leclairb, P. Hildgenb, A. Guptac, and J.C. Lerouxa, Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. Journal of Controlled Release, 2002. 82: p. 373-383. 61. Ruel-Gariépy, E., M. Shive, A. Bichara, M. Berrada, D. Le Garrec, A. Chenite, and J.-C. Leroux, A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 53-63. 62. Molinaro, G., J.C. Leroux, J. Damas, and A. Adam, Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials, 2002. 23: p. 2717-2722. 63. Butterfield, D., A. Castegna, C. Pocernich, J. Drake, G. Scapagnini, and V. Calabrese, Nutritional approaches to combat oxidative stress in Alzheimer’s disease. Journal of Nutritional Biochemistry, 2002. 13: p. 444–461. 64. Kim, H.S., J.Y. Cho, D.H. Kim, J.J. Yam, H.K. Lee, H.W. Suh, and D.K. Sing, Inhibitory Effects of Long-Term Administration of Ferulic Acid on Microglial Activation Induced by Intracerebroventricular Injection of β-Amyloid Peptide (1—42) in Mice. Biological and Pharmaceutical Bulletin, 2004. 27(1): p. 120-121. 65. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell proliferation, 2003. 36(131-149). 66. Leker, R.R. and E. Shohami, Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Research Reviews, 2002. 39(1): p. 55-73. 67. Oppenheim, R.W., D. Prevette, and Q.W. Yin, Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science, 1991. 251: p. 1616-1618. 68. McAllister, A.K., L.C. Katz, and D.C. Lo, Neurotrophins and synaptic plasticity. Annual Review of Neuroscience, 1999. 22: p. 295–318. 69. Tyler, W.J., M. Alonso, C.R. Bramham, and L.D. Pozzo-Miller, From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem, 2002. 9(5): p. 224-237. 70. Riley, C.P., T.C. Cope, and C.R. Buck, CNS neurotrophins are biologically active and expressed by multiple cell types. Journal of Molecular Histology, 2004. 35: p. 771–783. 71. Meynaar, I.A., H.M. Oudemans-van Straaten, J. van der Wetering, P. Verlooy, E.H. Slaats, R.J. Bosman, J.I. van der Spoel, and D.F. Zandstra, Serum neuron-specific enolase predicts outcome in post-anoxic coma: a prospective cohort study. Intensive Care Medicine, 2003. 29(2): p. 189-195. 72. Gahm, C., S. Holmin, and T. Mathiesen, Temporal profiles and cellular sources of three nitric oxide synthase isoforms in the brain after experimental contusion. Neurosurgery, 2000. 46(1): p. 169-177. 73. Kasprzak, H.A., A. Woźniak, G. Drewa, and B. Woźniak, Enhanced lipid peroxidation processes in patients after brain contusion. Journal of Neurotrauma, 2001. 18(8): p. 793-797. 74. Arvin, B., L.F. Neville, F.C. Barone, and G.Z. Feuerstein, The role of inflammation and cytokines in brain injury. Neuroscience & Biobehavioral Reviews, 1996. 20(3): p. 445-452. 75. Brites, D., The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol, 2012. 3: p. 88. 76. Goodman, J.C., C.S. Robertson, R.G. Grossman, and R.K. Narayan, Elevation of tumor necrosis factor in head injury. Journal of Neuroimmunology, 1990. 30(2-3): p. 213-217. 77. Taupin, V., S. Toulmond, A. Serrano, J. Benavides, and F. Zavala, Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. Journal of Neuroimmunology, 1993. 42(2): p. 177-185. 78. Liu, T., P.C. McDonnell, P.R. Young, R.F. White, A.L. Siren, J.M. Hallenbeck, F.C. Barone, and G.Z. Feurestein, Interleukin-1 beta mRNA expression in ischemic rat cortex. Stroke, 1993. 24(11): p. 1746-1750. 79. Wang, X., T.L. Yue, F.C. Barone, R.F. White, R.C. Gagnon, and G.Z. Feuerstein, Concomitant cortical expression of TNF-alpha and IL-1 beta mRNAs follows early response gene expression in transient focal ischemia. Molecular and Chemical Neuropathology, 1994. 23(2-3): p. 103-114. 80. Keshavarzi, Z., M. Khaksari, Z. Razmi, A. Soltani Hekmat, V. Naderi, and S. Rostami, The effects of cyclooxygenase inhibitors on the brain inflammatory response following traumatic brain injury in rats. Iranian Journal of Basic Medical Sciences, 2012. 15(5): p. 1102-1105. 81. Green, D.R., A. Oberst, C.P. Dillon, R. Weinlich, and G.S. Salvesen, RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell, 2011. 44(1): p. 9-16. 82. Clark, R.S., J. Chen, S.C. Watkins, P.M. Kochanek, M. Chen, R.A. Stetler, J.E. Loeffert, and S.H. Graham, Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. Journal of Neuroscience, 1997. 17(23): p. 9172-9182. 83. Raghupathi, R., S.C. Fernandez, H. Murai, S.P. Trusko, R.W. Scott, W.K. Nishioka, and T.K. McIntosh, BCL-2 overexpression attenuates cortical cell loss after traumatic brain injury in transgenic mice. Journal of Cerebral Blood Flow & Metabolism, 1988. 18(11): p. 1259-1269. 84. Ucar, T., G. Tanriover, I. Gurer, M.Z. Onal, and S. Kazan, Modified experimental mild traumatic brain injury model. J Trauma, 2006. 60(3): p. 558-565. 85. Albert-Weissenberger, C. and A.L. Siren, Experimental traumatic brain injury. Exp Transl Stroke Med, 2010. 2(1): p. 16.
|