|
1. Nakamura, H., Izumoto, Y., Kambe, H., Kuroda, T., Mori, T., Kawamura, K., Yamamoto, H. & Kishimoto, T. (1994). Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-9. 2. Izumoto, Y., Kuroda, T., Harada, H., Kishimoto, T. & Nakamura, H. (1997). Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238, 26-32. 3. Ikegame, K., Yamamoto, M., Kishima, Y., Enomoto, H., Yoshida, K., Suemura, M., Kishimoto, T. & Nakamura, H. (1999). A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 266, 81-7. 4. Dietz, F., Franken, S., Yoshida, K., Nakamura, H., Kappler, J. & Gieselmann, V. (2002). The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 366, 491-500. 5. Ge, H., Si, Y. & Roeder, R. G. (1998). Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17, 6723-9. 6. Oliver, J. A. & Al-Awqati, Q. (1998). An endothelial growth factor involved in rat renal development. J Clin Invest 102, 1208-19. 7. Everett, A. D., Lobe, D. R., Matsumura, M. E., Nakamura, H. & McNamara, C. A. (2000). Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest 105, 567-75. 8. Kishima, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Okuda, Y., Uyama, H. & Nakamura, H. (2002). Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepatology 49, 1639-44. 9. Sue, S. C., Chen, J. Y., Lee, S. C., Wu, W. G. & Huang, T. H. (2004). Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 343, 1365-77. 10. Slater, L. M., Allen, M. D. & Bycroft, M. (2003). Structural variation in PWWP domains. J Mol Biol 330, 571-6. 11. Abouzied, M. M., Baader, S. L., Dietz, F., Kappler, J., Gieselmann, V. & Franken, S. (2004). Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J 378, 169-76. 12. Enomoto, H., Yoshida, K., Kishima, Y., Kinoshita, T., Yamamoto, M., Everett, A. D., Miyajima, A. & Nakamura, H. (2002). Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-27. 13. Yoshida, K., Nakamura, H., Okuda, Y., Enomoto, H., Kishima, Y., Uyama, H., Ito, H., Hirasawa, T., Inagaki, S. & Kawase, I. (2003). Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 18, 1293-301. 14. Hu, T. H., Huang, C. C., Liu, L. F., Lin, P. R., Liu, S. Y., Chang, H. W., Changchien, C. S., Lee, C. M., Chuang, J. H. & Tai, M. H. (2003). Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-56. 15. El-Rifai, W., Frierson, H. F., Jr., Harper, J. C., Powell, S. M. & Knuutila, S. (2001). Expression profiling of gastric adenocarcinoma using cDNA array. Int J Cancer 92, 832-8. 16. Zhang, J., Ren, H., Yuan, P., Lang, W., Zhang, L. & Mao, L. (2006). Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66, 18-23. 17. Matsuyama, A., Inoue, H., Shibuta, K., Tanaka, Y., Barnard, G. F., Sugimachi, K. & Mori, M. (2001). Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res 61, 5714-7. 18. Yang, J. & Everett, A. D. (2007). Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. Bmc Mol Biol 8. 19. Bueno, M. T. D., Garcia-Rivera, J. A., Kugelman, J. R., Morales, E., Rosas-Acosta, G. & Llano, M. (2010). SUMOylation of the Lens Epithelium-Derived Growth Factor/p75 Attenuates Its Transcriptional Activity on the Heat Shock Protein 27 Promoter. J Mol Biol 399, 221-239. 20. Everett, A. D., Yang, J., Rahman, M., Dulloor, P. & Brautigan, D. L. (2011). Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. Bmc Cell Biol 12. 21. Kishima, Y., Yamamoto, H., Izumoto, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Ito, H., Yoshizaki, K. & Nakamura, H. (2002). Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-10322. 22. Abouzied, M. M., El-Tahir, H. M., Prenner, L., Haberlein, H., Gieselmann, V. & Franken, S. (2005). Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem 280, 10945-54. 23. Goodfellow, I. G., Sioofy, A. B., Powell, R. M. & Evans, D. J. (2001). Echoviruses bind heparan sulfate at the cell surface. J Virol 75, 4918-4921. 24. Wang, C. H., Davamani, F., Sue, S. C., Lee, S. C., Wu, P. L., Tang, F. M., Shih, C., Huang, T. H. & Wu, W. G. (2011). Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 433, 127-138. 25. Fritz, T. A., Lugemwa, F. N., Sarkar, A. K. & Esko, J. D. (1994). Biosynthesis of Heparan-Sulfate on Beta-D-Xylosides Depends on Aglycone Structure. J Biol Chem 269, 300-307. 26. Sue, S. C., Chen, J. Y. & Huang, T. H. (2004). Letter to the Editor: Sequence specific H-1, C-13 and N-15 resonance assignments of the hath-domain of human hepatoma-derived growth factor. J Biomol Nmr 29, 95-96. 27. Lukasik, S. M., Cierpicki, T., Borloz, M., Grembecka, J., Everett, A. & Bushweller, J. H. (2006). High resolution structure of the HDGF PWWP domain: A potential DNA binding domain. Prot Sci 15, 314-323. 28. Eidahl, J. O., Crowe, B. L., North, J. A., McKee, C. J., Shkriabai, N., Feng, L., Plumb, M., Graham, R. L., Gorelick, R. J., Hess, S., Poirier, M. G., Foster, M. P. & Kvaratskhelia, M. (2013). Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41, 3924-3936. 29. Stec, I., Nagl, S. B., van Ommen, G. J. & den Dunnen, J. T. (2000). The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473, 1-5. 30. Stec, I., Wright, T. J., van Ommen, C. J. B., de Boer, P. A. J., van Haeringen, A., Moorman, A. F. M., Altherr, M. R. & den Dunnen, J. T. (1998). WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to the Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma (vol 7, pg 1071, 1998). Hum Mol Genet 7, 1527-1528. 31. Wu, H., Zeng, H., Lam, R., Tempel, W., Amaya, M. F., Xu, C., Dombrovski, L., Qiu, W., Wang, Y. M. & Min, J. R. (2011). Structural and Histone Binding Ability Characterizations of Human PWWP Domains. Plos One 6. 32. Sue, S. C., Alverdi, V., Komives, E. A. & Dyson, H. J. (2011). Detection of a ternary complex of NF-kappa B and I kappa B alpha with DNA provides insights into how I kappa B alpha removes NF-kappa B from transcription sites. Proc Nati Acad Sci USA 108, 1367-1372. 33. Chen, F. F., Lin, W. H., Lin, S. C., Kuo, J. H., Chu, H. Y., Huang, W. C., Chuang, Y. J., Lee, S. C. & Sue, S. C. (2012). Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology 22, 649-61. 34. Fersht, A. (1999). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, W. H. Freeman. 35. Spera, S. & Bax, A. (1991). Empirical Correlation between Protein Backbone Conformation and C-Alpha and C-Beta C-13 Nuclear-Magnetic-Resonance Chemical-Shifts. J Am Chem Soc 113, 5490-5492. 36. Schwarzinger, S., Kroon, G. J. A., Foss, T. R., Chung, J., Wright, P. E. & Dyson, H. J. (2001). Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123, 2970-2978. 37. Grzesiek, S., Stahl, S. J., Wingfield, P. T. & Bax, A. (1996). The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35, 10256-10261. 38. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. (2009). TALOS plus : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol Nmr 44, 213-223. 39. Bloch, F., Hansen, W. W. & Packard, M. (1946). Nuclear Induction. Physical Review 69, 127-127. 40. Kay, L. E., Torchia, D. A. & Bax, A. (1989). Backbone Dynamics of Proteins as Studied by N-15 Inverse Detected Heteronuclear Nmr-Spectroscopy - Application to Staphylococcal Nuclease. Biochem 28, 8972-8979. 41. Meiboom, S. & Gill, D. (1958). Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Review of Scientific Instruments 29, 688-691. 42. Levitt, M. H. (2001). Spin Dynamics: Basics of Nuclear Magnetic Resonance, John Wiley and Sons, New York. 43. Lipari, G. & Szabo, A. (1982). Model-Free Approach to the Interpretation of Nuclear Magnetic-Resonance Relaxation in Macromolecules .1. Theory and Range of Validity. J Am Chem Soc 104, 4546-4559. 44. Lipari, G. & Szabo, A. (1982). Model-Free Approach to the Interpretation of Nuclear Magnetic-Resonance Relaxation in Macromolecules .2. Analysis of Experimental Results. J Am Chem Soc 104, 4559-4570. 45. Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. & Gronenborn, A. M. (1990). Deviations from the Simple 2-Parameter Model-Free Approach to the Interpretation of N-15 Nuclear Magnetic-Relaxation of Proteins. J Am Chem Soc 112, 4989-4991. 46. Blumenschein, T. M., Stone, D. B., Fletterick, R. J., Mendelson, R. A. & Sykes, B. D. (2006). Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys J 90, 2436-44. 47. d'Auvergne, E. J. & Gooley, P. R. (2007). Set theory formulation of the model-free problem and the diffusion seeded model-free paradigm. Mol Biosyst 3, 483-94. 48. Gopinath, S. C. B. (2010). Biosensing applications of surface plasmon resonance-based Biacore technology. Sensors and Actuators B-Chemical 150, 722-733. 49. Michaelis, L. & Menten, M. L. (1913). The kenetics of the inversion effect. Biochemische Zeitschrift 49, 333-369. 50. Holdgate, G. A. & Ward, W. H. J. (2005). Measurements of binding thermodynamics in drug discovery. Drug Discovery Today 10, 1543-1550. 51. Bai, Y. W., Milne, J. S., Mayne, L. & Englander, S. W. (1993). Primary Structure Effects on Peptide Group Hydrogen-Exchange. Proteins-Structure Function and Genetics 17, 75-86. 52. Englander, S. W., Sosnick, T. R., Englander, J. J. & Mayne, L. (1996). Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol 6, 18-23. 53. Zhang, Y.-Z. Protein and Peptide Structure and Interactions Studied by Hydrogen Exchange and NMR, University of Pennsylvania.
|