帳號:guest(18.191.240.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李黠汝
作者(外文):Lee, Hsia-Ju
論文名稱(中文):肝癌衍生生長因子PWWP區域第一個胺基酸對蛋白質穩定性與受體結合能力的影響
論文名稱(外文):The first residue of PWWP motif modulates Hepatoma - Derived Growth Factor binding and stability
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):程家維
徐駿森
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080589
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:63
中文關鍵詞:肝腫瘤衍生成長因子PWWP 區域醣肝素肝腫瘤衍生成長因子及其相關蛋白氫氘交換實驗生長因子核磁共振光譜
外文關鍵詞:HDGFPWWP motifheparinHRPsH/D exchangegrowth factorNMR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:528
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
人類細胞中的肝癌衍生生長因子(hHDGF),不論在細胞膜內外皆具有刺激細胞增殖的能力,細胞核中作為轉錄因子與DNA結合,細胞膜外扮演生長因子的角色與細胞膜上的受體鍵結。HDGF是經由位於序列N端的 PWWP/HATH domain鍵結上細胞表面的硫酸乙醯肝素(heparan sulfate)進而進入到細胞當中。PWWP/HATH domains 是HDGF相關蛋白質家族(HDGF-related proteins, HRPs)中,一段具有高度保留性的區域(序列相似度大於70%),而這段區域皆包含特殊的PWWP motif。在HRPs序列中的PWWP motif,由第一個殘基的不同可區分為兩種類型,第一種序列為PHWP (Pro-His-Trp-Pro),另一種為AHWP。為了解PWWP motif第一個殘基對蛋白質功能的影響,選用hHDGF為研究對象,將hHDGF PWWP motif第一個殘基Pro變異成Ala,將變異後的蛋白質簡稱為HATH P24A,進一步觀測變異蛋白與原始蛋白在穩定度與肝素(heparin)鍵結的改變。表面電漿共振(SPR)與恆溫滴定微卡計(ITC)皆顯示殘基對肝素鍵結能力(KD ≈ 1×10-6 M)影響不大,然而由核磁共振(NMR)氫氘交換實驗與圓二色光譜儀(CD)測得的耐受溫度(Tm)發現,殘基變異大幅降低 HATH domain的穩定度。此外,HATH P24A特徵也與先前觀察HRPs的AHWP類型相似,蛋白質溶液有嚴重的聚集(aggregation)現象產生,最後我們使用NMR得到蛋白質動力學(dynamic)參數,探討殘基變異對於蛋白質動態所造成的影響。總結,利用單點突變以及核磁共振的技術,本研究證明PWWP motif第一個殘基,對於HATH domain的穩定性扮演重要角色。
Hepatoma-derived growth factor (hHDGF) stimulates cell proliferation on both sides of plasma membrane by either binding to membrane receptor as a growth factor or binding to DNA in nucleus as a transcriptional factor. Secreted hHDGF recognizes cell surface heparan sulfate to promote its internalization and the N-terminal PWWP/HATH domain have been proved to be responsible for the heparan sulfate binding. The PWWP/HATH domains are highly conserved among the HDGF-related proteins (HRPs) with high identity > 70% and all domains contain the characteristic structural motif, PWWP motif. The PWWP motifs in HRPs can be classified into two types due to the difference of the first residue. One is with sequence of PHWP (Pro-His-Trp-Pro) and the other is AHWP. In order to realize the significance of the first residue of PWWP motif in mediating protein function and structure, we chose HDGF as models and examined the protein stability and heparin binding by replacing the Pro residue to Ala (mutation P24A). As shown by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), the binding affinity of heparin (KD ≈ 1×10-6 M) was less related to the residue. However, the substitution significantly reduced PWWP/HATH domain stability as reflected in NMR H/D exchange experiment and circular dichroism (CD) melting temperature measurement. In addition, we also detected NMR dynamic parameters on the local region to illustrate the dynamic differences derived from the mutation. Nevertheless, the phenomenon well corresponds to the severe aggregation tendency previously observed in AHWP-type HRPs. In summary, using site-direct mutagenesis and solution NMR method, we identified that the first residue of PWWP motif plays the key role in mediating PWWP domain stability.
目錄
英文摘要 I
中文摘要 III
縮寫(Abbreviations) V
第一章. 前言 1
1.1 HDGF的介紹 1
1.2 hHDGF HATH domain的功能 2
1.3 hHDGF HATH domains的結構 3
1.4 PWWP motif 4
1.5 hHDGF HATH domains殘基對肝素鍵結的貢獻 5
1.6 研究動機 6
第二章. 材料與方法 10
2.1 Cloning: hHDGF與HRP-4單點突變(Site-Directed Mutagenesis) 10
2.2 蛋白質表現與純化 11
2.3 圓二色光譜儀(Circular Dichroism, CD) 13
2.4 核磁共振(Nuclear magnetic resonance, NMR) 15
2.4.1 NMR樣品製備 15
2.4.2 HATH P24A backbone assignment 15
2.4.3 蛋白質二級結構預測 16
2.4.4 蛋白質化學位移擾動(chemical shift perturbation) 16
2.4.5 核磁共振的氫/氘交換實驗(NMR H/D exchange) 17
2.5 蛋白質動力學(dynamic)分析 19
2.5.1 核磁共振自旋弛豫理論(NMR spin relaxation) 19
2.5.2 Nuclear Overhauser Effect (NOE)43 20
2.5.3 無模型法則(Model-free formalism) 21
2.6 表面電漿共振(surface plasmon resonance, SPR) 24
2.6.1 SPR 樣品製備 25
2.6.2 肝素Biochip的製備 25
2.6.3 SPR實驗參數設定 25
2.6.4 Scatchard plot分析數據 26
2.6.5 競爭反應 27
2.7 恆溫滴定微卡計(Isothermal Titration Calorimetry, ITC) 28
2.7.1 ITC樣品製備 29
2.7.2實驗操作流程 29
第三章. 結果 34
3.1 CD圖譜比較原始與變異蛋白在二級結構上的差異 34
3.2 化學位移擾動 35
3.3 HATH P24A 二級結構分析 36
3.4 HATHs的氫氘交換實驗分析 36
3.5 HATHs的動力學分析 38
3.6 HATHs與肝素結合能力的分析 40
第四章. 討論 42
參考文獻 59

1. Nakamura, H., Izumoto, Y., Kambe, H., Kuroda, T., Mori, T., Kawamura, K., Yamamoto, H. & Kishimoto, T. (1994). Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-9.
2. Izumoto, Y., Kuroda, T., Harada, H., Kishimoto, T. & Nakamura, H. (1997). Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238, 26-32.
3. Ikegame, K., Yamamoto, M., Kishima, Y., Enomoto, H., Yoshida, K., Suemura, M., Kishimoto, T. & Nakamura, H. (1999). A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 266, 81-7.
4. Dietz, F., Franken, S., Yoshida, K., Nakamura, H., Kappler, J. & Gieselmann, V. (2002). The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 366, 491-500.
5. Ge, H., Si, Y. & Roeder, R. G. (1998). Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17, 6723-9.
6. Oliver, J. A. & Al-Awqati, Q. (1998). An endothelial growth factor involved in rat renal development. J Clin Invest 102, 1208-19.
7. Everett, A. D., Lobe, D. R., Matsumura, M. E., Nakamura, H. & McNamara, C. A. (2000). Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest 105, 567-75.
8. Kishima, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Okuda, Y., Uyama, H. & Nakamura, H. (2002). Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepatology 49, 1639-44.
9. Sue, S. C., Chen, J. Y., Lee, S. C., Wu, W. G. & Huang, T. H. (2004). Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 343, 1365-77.
10. Slater, L. M., Allen, M. D. & Bycroft, M. (2003). Structural variation in PWWP domains. J Mol Biol 330, 571-6.
11. Abouzied, M. M., Baader, S. L., Dietz, F., Kappler, J., Gieselmann, V. & Franken, S. (2004). Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J 378, 169-76.
12. Enomoto, H., Yoshida, K., Kishima, Y., Kinoshita, T., Yamamoto, M., Everett, A. D., Miyajima, A. & Nakamura, H. (2002). Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-27.
13. Yoshida, K., Nakamura, H., Okuda, Y., Enomoto, H., Kishima, Y., Uyama, H., Ito, H., Hirasawa, T., Inagaki, S. & Kawase, I. (2003). Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 18, 1293-301.
14. Hu, T. H., Huang, C. C., Liu, L. F., Lin, P. R., Liu, S. Y., Chang, H. W., Changchien, C. S., Lee, C. M., Chuang, J. H. & Tai, M. H. (2003). Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-56.
15. El-Rifai, W., Frierson, H. F., Jr., Harper, J. C., Powell, S. M. & Knuutila, S. (2001). Expression profiling of gastric adenocarcinoma using cDNA array. Int J Cancer 92, 832-8.
16. Zhang, J., Ren, H., Yuan, P., Lang, W., Zhang, L. & Mao, L. (2006). Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66, 18-23.
17. Matsuyama, A., Inoue, H., Shibuta, K., Tanaka, Y., Barnard, G. F., Sugimachi, K. & Mori, M. (2001). Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res 61, 5714-7.
18. Yang, J. & Everett, A. D. (2007). Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. Bmc Mol Biol 8.
19. Bueno, M. T. D., Garcia-Rivera, J. A., Kugelman, J. R., Morales, E., Rosas-Acosta, G. & Llano, M. (2010). SUMOylation of the Lens Epithelium-Derived Growth Factor/p75 Attenuates Its Transcriptional Activity on the Heat Shock Protein 27 Promoter. J Mol Biol 399, 221-239.
20. Everett, A. D., Yang, J., Rahman, M., Dulloor, P. & Brautigan, D. L. (2011). Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. Bmc Cell Biol 12.
21. Kishima, Y., Yamamoto, H., Izumoto, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Ito, H., Yoshizaki, K. & Nakamura, H. (2002). Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-10322.
22. Abouzied, M. M., El-Tahir, H. M., Prenner, L., Haberlein, H., Gieselmann, V. & Franken, S. (2005). Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem 280, 10945-54.
23. Goodfellow, I. G., Sioofy, A. B., Powell, R. M. & Evans, D. J. (2001). Echoviruses bind heparan sulfate at the cell surface. J Virol 75, 4918-4921.
24. Wang, C. H., Davamani, F., Sue, S. C., Lee, S. C., Wu, P. L., Tang, F. M., Shih, C., Huang, T. H. & Wu, W. G. (2011). Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 433, 127-138.
25. Fritz, T. A., Lugemwa, F. N., Sarkar, A. K. & Esko, J. D. (1994). Biosynthesis of Heparan-Sulfate on Beta-D-Xylosides Depends on Aglycone Structure. J Biol Chem 269, 300-307.
26. Sue, S. C., Chen, J. Y. & Huang, T. H. (2004). Letter to the Editor: Sequence specific H-1, C-13 and N-15 resonance assignments of the hath-domain of human hepatoma-derived growth factor. J Biomol Nmr 29, 95-96.
27. Lukasik, S. M., Cierpicki, T., Borloz, M., Grembecka, J., Everett, A. & Bushweller, J. H. (2006). High resolution structure of the HDGF PWWP domain: A potential DNA binding domain. Prot Sci 15, 314-323.
28. Eidahl, J. O., Crowe, B. L., North, J. A., McKee, C. J., Shkriabai, N., Feng, L., Plumb, M., Graham, R. L., Gorelick, R. J., Hess, S., Poirier, M. G., Foster, M. P. & Kvaratskhelia, M. (2013). Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41, 3924-3936.
29. Stec, I., Nagl, S. B., van Ommen, G. J. & den Dunnen, J. T. (2000). The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473, 1-5.
30. Stec, I., Wright, T. J., van Ommen, C. J. B., de Boer, P. A. J., van Haeringen, A., Moorman, A. F. M., Altherr, M. R. & den Dunnen, J. T. (1998). WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to the Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma (vol 7, pg 1071, 1998). Hum Mol Genet 7, 1527-1528.
31. Wu, H., Zeng, H., Lam, R., Tempel, W., Amaya, M. F., Xu, C., Dombrovski, L., Qiu, W., Wang, Y. M. & Min, J. R. (2011). Structural and Histone Binding Ability Characterizations of Human PWWP Domains. Plos One 6.
32. Sue, S. C., Alverdi, V., Komives, E. A. & Dyson, H. J. (2011). Detection of a ternary complex of NF-kappa B and I kappa B alpha with DNA provides insights into how I kappa B alpha removes NF-kappa B from transcription sites. Proc Nati Acad Sci USA 108, 1367-1372.
33. Chen, F. F., Lin, W. H., Lin, S. C., Kuo, J. H., Chu, H. Y., Huang, W. C., Chuang, Y. J., Lee, S. C. & Sue, S. C. (2012). Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology 22, 649-61.
34. Fersht, A. (1999). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, W. H. Freeman.
35. Spera, S. & Bax, A. (1991). Empirical Correlation between Protein Backbone Conformation and C-Alpha and C-Beta C-13 Nuclear-Magnetic-Resonance Chemical-Shifts. J Am Chem Soc 113, 5490-5492.
36. Schwarzinger, S., Kroon, G. J. A., Foss, T. R., Chung, J., Wright, P. E. & Dyson, H. J. (2001). Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123, 2970-2978.
37. Grzesiek, S., Stahl, S. J., Wingfield, P. T. & Bax, A. (1996). The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35, 10256-10261.
38. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. (2009). TALOS plus : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol Nmr 44, 213-223.
39. Bloch, F., Hansen, W. W. & Packard, M. (1946). Nuclear Induction. Physical Review 69, 127-127.
40. Kay, L. E., Torchia, D. A. & Bax, A. (1989). Backbone Dynamics of Proteins as Studied by N-15 Inverse Detected Heteronuclear Nmr-Spectroscopy - Application to Staphylococcal Nuclease. Biochem 28, 8972-8979.
41. Meiboom, S. & Gill, D. (1958). Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Review of Scientific Instruments 29, 688-691.
42. Levitt, M. H. (2001). Spin Dynamics: Basics of Nuclear Magnetic Resonance, John Wiley and Sons, New York.
43. Lipari, G. & Szabo, A. (1982). Model-Free Approach to the Interpretation of Nuclear Magnetic-Resonance Relaxation in Macromolecules .1. Theory and Range of Validity. J Am Chem Soc 104, 4546-4559.
44. Lipari, G. & Szabo, A. (1982). Model-Free Approach to the Interpretation of Nuclear Magnetic-Resonance Relaxation in Macromolecules .2. Analysis of Experimental Results. J Am Chem Soc 104, 4559-4570.
45. Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. & Gronenborn, A. M. (1990). Deviations from the Simple 2-Parameter Model-Free Approach to the Interpretation of N-15 Nuclear Magnetic-Relaxation of Proteins. J Am Chem Soc 112, 4989-4991.
46. Blumenschein, T. M., Stone, D. B., Fletterick, R. J., Mendelson, R. A. & Sykes, B. D. (2006). Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys J 90, 2436-44.
47. d'Auvergne, E. J. & Gooley, P. R. (2007). Set theory formulation of the model-free problem and the diffusion seeded model-free paradigm. Mol Biosyst 3, 483-94.
48. Gopinath, S. C. B. (2010). Biosensing applications of surface plasmon resonance-based Biacore technology. Sensors and Actuators B-Chemical 150, 722-733.
49. Michaelis, L. & Menten, M. L. (1913). The kenetics of the inversion effect. Biochemische Zeitschrift 49, 333-369.
50. Holdgate, G. A. & Ward, W. H. J. (2005). Measurements of binding thermodynamics in drug discovery. Drug Discovery Today 10, 1543-1550.
51. Bai, Y. W., Milne, J. S., Mayne, L. & Englander, S. W. (1993). Primary Structure Effects on Peptide Group Hydrogen-Exchange. Proteins-Structure Function and Genetics 17, 75-86.
52. Englander, S. W., Sosnick, T. R., Englander, J. J. & Mayne, L. (1996). Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol 6, 18-23.
53. Zhang, Y.-Z. Protein and Peptide Structure and Interactions Studied by Hydrogen Exchange and NMR, University of Pennsylvania.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *