|
1. Ko, A.I., C. Goarant, and M. Picardeau, Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol, 2009. 7(10): p. 736-47. 2. Trueba, G.A., C.A. Bolin, and R.L. Zuerner, Characterization of the periplasmic flagellum proteins of Leptospira interrogans. J Bacteriol, 1992. 174(14): p. 4761-8. 3. Evangelista, K.V. and J. Coburn, Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiology, 2010. 5(9): p. 1413-1425. 4. Goncalves-de-Albuquerque, C.F., et al., Leptospira and inflammation. Mediators Inflamm, 2012. 2012: p. 317950. 5. Johnson, R.C. and J.K. Walby, Cultivation of leptospires: fatty acid requirements. Appl Microbiol, 1972. 23(5): p. 1027-8. 6. Adler, B. and A. de la Pena Moctezuma, Leptospira and leptospirosis. Vet Microbiol, 2010. 140(3-4): p. 287-96. 7. Leptospirosis worldwide, 1999. Wkly Epidemiol Rec, 1999. 74(29): p. 237-42. 8. Yang, C.W., Leptospirosis renal disease: Understanding the initiation by Toll-like receptors. Kidney International, 2007. 72(8): p. 918-925. 9. Branger, C., et al., Identification of the hemolysis-associated protein 1 as a cross-protective immunogen of Leptospira interrogans by adenovirus-mediated vaccination. Infection and Immunity, 2001. 69(11): p. 6831-6838. 10. Haake, D.A., et al., Leptospiral outer membrane proteins OmpL1 and LipL41 exhibit synergistic immunoprotection. Infection and Immunity, 1999. 67(12): p. 6572-6582. 11. Hung, C.C., et al., Upregulation of chemokine CXCL1/KC by leptospiral membrane lipoprotein preparation in renal tubule epithelial cells. Kidney Int, 2006. 69(10): p. 1814-22. 12. Yang, C.W., et al., Leptospira outer membrane protein activates NF-kappaB and downstream genes expressed in medullary thick ascending limb cells. J Am Soc Nephrol, 2000. 11(11): p. 2017-26. 13. Alves, V.A.F., et al., Leptospiral Antigens (L-Interrogans Serogroup Ictero-Haemorrhagiae) in the Kidney of Experimentally Infected Guinea-Pigs and Their Relation to the Pathogenesis of the Renal Injury. Experimental Pathology, 1991. 42(2): p. 81-93. 14. Barnett, J.K., et al., Expression and distribution of leptospiral outer membrane components during renal infection of hamsters. Infection and Immunity, 1999. 67(2): p. 853-861. 15. Haake, D.A., et al., The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infection and Immunity, 2000. 68(4): p. 2276-2285. 16. Tokuda, H. and S. Matsuyama, Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta, 2004. 1693(1): p. 5-13. 17. Hayashi, S. and H.C. Wu, Lipoproteins in bacteria. J Bioenerg Biomembr, 1990. 22(3): p. 451-71. 18. Inouye, S., et al., Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proc Natl Acad Sci U S A, 1977. 74(3): p. 1004-8. 19. Kamalakkannan, S., et al., Bacterial lipid modification of proteins for novel protein engineering applications. Protein Engineering Design & Selection, 2004. 17(10): p. 721-729. 20. Haake, D.A., et al., Molecular cloning and sequence analysis of the gene encoding OmpL1, a transmembrane outer membrane protein of pathogenic Leptospira spp. J Bacteriol, 1993. 175(13): p. 4225-34. 21. Shang, E.S., T.A. Summers, and D.A. Haake, Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect Immun, 1996. 64(6): p. 2322-30. 22. Cullen, P.A., et al., Surfaceome of Leptospira spp. Infect Immun, 2005. 73(8): p. 4853-63. 23. Barnett, J.K., et al., Expression and distribution of leptospiral outer membrane components during renal infection of hamsters. Infect Immun, 1999. 67(2): p. 853-61. 24. Monahan, A.M., J.J. Callanan, and J.E. Nally, Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect Immun, 2008. 76(11): p. 4952-8. 25. Asuthkar, S., et al., Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai. Infect Immun, 2007. 75(9): p. 4582-91. 26. Nygaard, T.K., et al., Identification and characterization of the heme-binding proteins SeShp and SeHtsA of Streptococcus equi subspecies equi. BMC Microbiol, 2006. 6: p. 82. 27. Rouault, T.A., Microbiology. Pathogenic bacteria prefer heme. Science, 2004. 305(5690): p. 1577-8. 28. Schaible, U.E. and S.H. Kaufmann, Iron and microbial infection. Nat Rev Microbiol, 2004. 2(12): p. 946-53. 29. Lo, M., et al., Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun, 2010. 78(11): p. 4850-9. 30. Velineni, S., S. Asuthkar, and M. Sritharan, Iron limitation and expression of immunoreactive outer membrane proteins in Leptospira interrogans serovar icterohaemorrhagiae strain lai. Indian J Med Microbiol, 2006. 24(4): p. 339-42. 31. Skaar, E.P., The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog, 2010. 6(8): p. e1000949. 32. Sikorski, R.S., et al., A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell, 1990. 60(2): p. 307-17. 33. Prilusky, J., et al., FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 2005. 21(16): p. 3435-8. 34. Uversky, V.N., J.R. Gillespie, and A.L. Fink, Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins, 2000. 41(3): p. 415-27. 35. Rossmann, M.G., Preparation and Analysis of Protein Crystals - Mcpherson,A. Journal of the American Chemical Society, 1983. 105(12): p. 4120-4121. 36. Wishart, D.S., et al., H-1, C-13 and N-15 Chemical-Shift Referencing in Biomolecular Nmr. Journal of Biomolecular Nmr, 1995. 6(2): p. 135-140. 37. Markley, J.L., et al., Recommendations for the presentation of NMR structures of proteins and nucleic acids - (IUPAC Recommendations 1998). Pure and Applied Chemistry, 1998. 70(1): p. 117-142. 38. Bohm, G., R. Muhr, and R. Jaenicke, Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng, 1992. 5(3): p. 191-5. 39. Schuck, P., et al., Size-distribution analysis of proteins by analytical ultracentrifugation: Strategies and application to model systems. Biophysical Journal, 2002. 82(2): p. 1096-1111. 40. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10. 41. Karpenahalli, M.R., A.N. Lupas, and J. Soding, TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinformatics, 2007. 8: p. 2. 42. Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 1999. 292(2): p. 195-202. 43. Gautier, R., et al., HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics, 2008. 24(18): p. 2101-2. 44. Lau, S.Y., A.K. Taneja, and R.S. Hodges, Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J Biol Chem, 1984. 259(21): p. 13253-61. 45. Li, X., et al., Predicting Protein Disorder for N-, C-, and Internal Regions. Genome Inform Ser Workshop Genome Inform, 1999. 10: p. 30-40. 46. Romero, P., et al., Sequence complexity of disordered protein. Proteins, 2001. 42(1): p. 38-48. 47. Romero, Obradovic, and K. Dunker, Sequence Data Analysis for Long Disordered Regions Prediction in the Calcineurin Family. Genome Inform Ser Workshop Genome Inform, 1997. 8: p. 110-124. 48. Tompa, P., Intrinsically unstructured proteins. Trends in Biochemical Sciences, 2002. 27(10): p. 527-533. 49. Dyson, H.J. and P.E. Wright, Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 2005. 6(3): p. 197-208. 50. Dunker, A.K., et al., Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 2008. 18(6): p. 756-764. 51. Oldfield, C.J., et al., Comparing and combining predictors of mostly disordered proteins. Biochemistry, 2005. 44(6): p. 1989-2000. 52. Cliff, M.J., et al., Molecular recognition via coupled folding and binding in a TPR domain. Journal of Molecular Biology, 2005. 346(3): p. 717-732. 53. Uversky, V.N., What does it mean to be natively unfolded? European Journal of Biochemistry, 2002. 269(1): p. 2-12. 54. Erickson, H.P., Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biological Procedures Online, 2009. 11(1): p. 32-51. 55. Lavinder, J.J., et al., High-Throughput Thermal Scanning: A General, Rapid Dye-Binding Thermal Shift Screen for Protein Engineering. Journal of the American Chemical Society, 2009. 131(11): p. 3794-+. 56. Kazakov, A.S., et al., Thermally induced structural changes of intrinsically disordered small heat shock protein Hsp22. Biophys Chem, 2009. 145(2-3): p. 79-85. 57. Reiersen, H. and A.R. Rees, Trifluoroethanol may form a solvent matrix for assisted hydrophobic interactions between peptide side chains. Protein Eng, 2000. 13(11): p. 739-43. 58. Diaz, M.D. and S. Berger, Preferential solvation of a tetrapeptide by trifluoroethanol as studied by intermolecular NOE. Magnetic Resonance in Chemistry, 2001. 39(7): p. 369-373. 59. Diaz, M.D., et al., Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: An NMR spectroscopic and molecular dynamics study. Chemistry-a European Journal, 2002. 8(7): p. 1663-1669. 60. Fioroni, M., et al., Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: A diffusion NMR, intermolecular NOE, and molecular dynamics study. Journal of the American Chemical Society, 2002. 124(26): p. 7737-7744. 61. Levett, P.N., Leptospirosis. Clin Microbiol Rev, 2001. 14(2): p. 296-326. 62. Cecil, R.L., L. Goldman, and A.I. Schafer, Goldman's Cecil medicine. 24th ed. 2012, Philadelphia: Elsevier/Saunders/. xlii, 2569, 86 p. 63. Cuff, J.A. and G.J. Barton, Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins, 2000. 40(3): p. 502-11. 64. Ouali, M. and R.D. King, Cascaded multiple classifiers for secondary structure prediction. Protein Sci, 2000. 9(6): p. 1162-76. 65. Kyte, J. and R.F. Doolittle, A Simple Method for Displaying the Hydropathic Character of a Protein. Journal of Molecular Biology, 1982. 157(1): p. 105-132. 66. Prilusky, J., et al., FoldIndex((c)): a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 2005. 21(16): p. 3435-3438. 67. Uversky, V.N., Natively unfolded proteins: A point where biology waits for physics. Protein Science, 2002. 11(4): p. 739-756. 68. Nielsen, M., et al., CPHmodels-3.0-remote homology modeling using structure-guided sequence profiles. Nucleic Acids Research, 2010. 38: p. W576-W581. 69. Schrodinger, LLC, The PyMOL Molecular Graphics System, Version 1.3r1, 2010.
|