帳號:guest(3.138.36.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許筑婷
論文名稱(中文):白色念珠菌轉錄因子Cup2之功能研究
論文名稱(外文):Functional analysis of the transcription factor Cup2 in Candida albicans
指導教授(中文):藍忠昱
口試委員(中文):張壯榮
賴志河
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:100080578
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:68
中文關鍵詞:白色念珠菌Cup2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:352
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
白色念珠菌是一伺機性致病菌,共生在人體中。它對健康人體是無害的,但對免疫低下的病患經常造成嚴重生命威脅。微量元素-銅(Cu)可維持生命體的基本生理機能,例如酵素活性。雖然銅對於細胞生長很重要,但是當過量銅存在便會對細胞造成毒性。此外,銅的恆定與人類疾病也有關。舉例來說,當人體銅的調節失衡,會造成緬克斯症候群和威爾森氏症。最近,許多研究指出銅也與真菌致病力有關。宿主可藉由累積銅在吞噬體中的機制來殺死微生物以抵抗致病菌入侵。由此可見,對細胞來說,銅的調控是非常重要的。為了解白色念珠菌對銅的調控以及銅與其致病性的關係,本研究以一個(尚未被證實)轉錄因子Cup2作為研究對象。研究發現,Cup2基因剔除的菌株在高銅環境(YPD培養基加銅)生長較遲緩,然而,在正常(YPD培養基)與低銅(YPD加銅螯合劑)中生長並無太大的影響。另外我們發現Cup2在高銅中是轉錄活化因子,並且調控銅運送以及去毒性相關的基因表現。當細胞沒有此轉錄因子時,細胞內的銅以及活性氧分子會大量增加。在我們的實驗中發現,Cup2並沒有直接影響到白色念珠菌的致病力。總而言之,本篇研究發現白色念珠菌Cup2 對於真菌體內銅的調節是有關聯的。
Abstract I
中文摘要 II
Table of Contents III
1. Introduction 1
1.1 Candida albicans and its significance in healthcare 1
1.2 Metals in biological processes 2
1.2.1 Metal homeostasis 2
1.2.2 Interaction of metals and microorganisms 3
1.2.3 The significance of copper in biology 3
1.3 Copper homeostasis: uptake and distribution 4
1.4 Copper tolerance and virulence 6
1.5 The aim of this study 7
2. Materials and Methods 8
2.1 C. albicans strains and growth conditions 8
2.2 Strain construction 8
2.2.1 CaCUP2 gene deletion and reconstitution 8
2.2.2 CaCUP2 one hybrid 10
2.2.3 CaCUP2 promoter analysis 10
2.2.4 Construction of green fluorescent protein (GFP)-tagged Cup2 11
2.3 Genomic DNA isolation 11
2.4 Southern blot analysis 12
2.5 RNA isolation, RT-PCR 13
2.6 Spot assay 14
2.7 Fluorescence microscopy 14
2.8 β-galactosidase assays 14
2.9 Measurement of intracellular copper 15
2.10 Measurement of intracellular ROS 16
2.11 Measurement of superoxide dismutase (SOD) activity 17
2.12 Virulence assay 17
2.13 Statistical analysis 18
3. Results 19
3.1 C. albicans Cup2 is similar to S. cerevisiae Cup2 (a.k.a. Ace1) 19
3.2 C. albicans CUP2-deleted mutants are defective in growth at a high copper condition 19
3.3 C. albicans Cup2 functions as a transcription activator in response to copper availability 20
3.4 C. albicans Cup2 activates copper homeostasis–related genes expression at a high copper condition 21
3.5 Detection of Cup2 binding on copper homeostasis-related gene promoter 22
3.6 C. albicans Cup2 location in response to copper. 22
3.7 Intracellular copper accumulation in CUP2-deleted mutants in a high copper condition. 23
3.8 Intracellular ROS levels CUP2-deleted mutants in a high copper condition 23
3.9 The role of Cup2 in C. albicans Virulence 24
4. Discussion 25
5. References 28
6. Appendix 59
1. Chen, P.-Y., et al., Comparison of epidemiology and treatment outcome of patients with candidemia at a teaching hospital in Northern Taiwan, in 2002 and 2010. Journal of Microbiology, Immunology and Infection, 2012. XX: p. 1-9.
2. Noble, S.M. and A.D. Johnson, Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet, 2007. 41: p. 193-211.
3. Sudbery, P.E., Growth of Candida albicans hyphae. Nat Rev Microbiol, 2011. 9(10): p. 737-48.
4. Beno, D.W., A.G. Stover, and H.L. Mathews, Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J Immunol, 1995. 154(10): p. 5273-81.
5. Matthew Morrell, V.J.F., and Marin H. Kollef, Delaying the Empiric Treatment of Candida Bloodstream Infection until Positive Blood Culture Results Are Obtained: a Potential Risk Factor for Hospital Mortality. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2005. 49: p. 3640–3645.
6. Chen, Y.C., et al., Secular trends in the epidemiology of nosocomial fungal infections at a teaching hospital in Taiwan, 1981 to 1993. Infect Control Hosp Epidemiol, 1997. 18(5): p. 369-75.
7. Wisplinghoff, H., et al., Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis, 2004. 39(3): p. 309-17.
8. Hung, C.C., et al., Nosocomial candidemia in a university hospital in Taiwan. J Formos Med Assoc, 1996. 95(1): p. 19-28.
9. Dalle, F., et al., Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol, 2010. 12(2): p. 248-71.
10. Zhu, W. and S.G. Filler, Interactions of Candida albicans with epithelial cells. Cell Microbiol, 2010. 12(3): p. 273-82.
11. Chaffin, W.L., Candida albicans cell wall proteins. Microbiol Mol Biol Rev, 2008. 72(3): p. 495-544.
12. Hiller, E., et al., Adaptation, adhesion and invasion during interaction of Candida albicans with the host--focus on the function of cell wall proteins. Int J Med Microbiol, 2011. 301(5): p. 384-9.
13. Lan, C.Y., et al., Metabolic specialization associated with phenotypic switching in Candidaalbicans. Proc Natl Acad Sci U S A, 2002. 99(23): p. 14907-12.
14. Morschhauser, J., Regulation of white-opaque switching in Candida albicans. Med Microbiol Immunol, 2010. 199(3): p. 165-72.
15. Soll, D.R., Why does Candida albicans switch? FEMS Yeast Res, 2009. 9(7): p. 973-89.
16. Sonneborn, A., B. Tebarth, and J.F. Ernst, Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun, 1999. 67(9): p. 4655-60.
17. Shapiro, R.S., N. Robbins, and L.E. Cowen, Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev, 2011. 75(2): p. 213-67.
18. Fleck, C.B., F. Schobel, and M. Brock, Nutrient acquisition by pathogenic fungi: nutrient availability, pathway regulation, and differences in substrate utilization. Int J Med Microbiol, 2011. 301(5): p. 400-7.
19. Bruins, M.R., S. Kapil, and F.W. Oehme, Microbial resistance to metals in the environment. Ecotoxicol Environ Saf, 2000. 45(3): p. 198-207.
20. Gadd, G.M., Interactions of fungip with toxic metals. New Phytologist, 1993. 124(1): p. 25-60.
21. White, C., S.C. Wilkinson, and G.M. Gadd, The role of microorganisms in biosorption of toxic metals and radionuclides. International Biodeterioration & Biodegradation, 1995. 35(1–3): p. 17-40.
22. Bleackley, M.R. and R.T. Macgillivray, Transition metal homeostasis: from yeast to human disease. Biometals, 2011. 24(5): p. 785-809.
23. Fenton, H.J.H., LXXIII.-Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 1894. 65(0): p. 899-910.
24. Gadd, G. and A. Griffiths, Microorganisms and heavy metal toxicity. Microbial Ecology, 1977. 4(4): p. 303-317.
25. Gadd, G. and L. Rome, Biosorption of copper by fungal melanin. Applied Microbiology and Biotechnology, 1988. 29(6): p. 610-617.
26. Gadd, G.M., Heavy metal accumulation by bacteria and other microorganisms. Experientia, 1990. 46(8): p. 834-840.
27. Gabbay, G.B.J., Copper, An ancient remedy returning to fight microbial, fungal and viral infections. Current Chemical Biology, 2009. 3(3): p. 272-278.
28. Kim, B.E., T. Nevitt, and D.J. Thiele, Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol, 2008. 4(3): p. 176-85.
29. Cross, J.D., A.C.D. Leslie, and H. Smith, Copper Levels in Human Tissue. Journal of the Forensic Science Society, 1976. 16(4): p. 311-315.
30. O'Halloran, T.V. and V.C. Culotta, Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem, 2000. 275(33): p. 25057-60.
31. Robinson, N.J. and D.R. Winge, Copper metallochaperones. Annu Rev Biochem, 2010. 79: p. 537-62.
32. de Silva, D., et al., Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin. J Biol Chem, 1997. 272(22): p. 14208-13.
33. Askwith, C., et al., The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell, 1994. 76(2): p. 403-410.
34. Zu, Z., R. McKendry, and C.L. Chavez, Signaling in copper ion homeostasis. Cell and Molecular Response to Stress. Vol. 1. 2000. 293-300.
35. Puig, S. and D.J. Thiele, Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol, 2002. 6(2): p. 171-80.
36. Gross, C., et al., Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem, 2000. 275(41): p. 32310-6.
37. Szczypka, M.S. and D.J. Thiele, A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol Cell Biol, 1989. 9(2): p. 421-9.
38. Buchman C, S.P., Welch J, Fogel S, Karin M., . MOLECULAR AND CELLULAR BIOLOGY, 1989. 9(9): p. 4091-4095.
39. Furst, P., et al., Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell, 1988. 55(4): p. 705-17.
40. Knight, S.A., et al., Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun, 2005. 73(9): p. 5482-92.
41. Woodacre, A., et al., Copper-dependent transcriptional regulation by Candida albicans Mac1p. Microbiology, 2008. 154(Pt 5): p. 1502-12.
42. Marvin, M.E., P.H. Williams, and A.M. Cashmore, The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology, 2003. 149(6): p. 1461-1474.
43. Schwartz, J.A., et al., Regulation of copper toxicity by Candida albicans GPA2. Eukaryot Cell, 2013. 12(7): p. 954-61.
44. Weissman, Z., et al., The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proceedings of the National Academy of Sciences, 2000. 97(7): p. 3520-3525.
45. Weissman, Z., R. Shemer, and D. Kornitzer, Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol, 2002. 44(6): p. 1551-60.
46. Riggle, P.J. and C.A. Kumamoto, Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol, 2000. 182(17): p. 4899-905.
47. Sanchez-Martinez, C. and J. Perez-Martin, Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans. Eukaryot Cell, 2002. 1(6): p. 865-74.
48. Rowland, J.L. and M. Niederweis, Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb), 2012. 92(3): p. 202-10.
49. White, C., et al., A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem, 2009. 284(49): p. 33949-56.
50. Festa, R.A. and D.J. Thiele, Copper at the front line of the host-pathogen battle. PLoS Pathog, 2012. 8(9): p. e1002887.
51. Hodgkinson, V. and M.J. Petris, Copper homeostasis at the host-pathogen interface. J Biol Chem, 2012. 287(17): p. 13549-55.
52. Raja, M.R., et al., A copper hyperaccumulation phenotype correlates with pathogenesis in Cryptococcus neoformans. Metallomics, 2013. 5(4): p. 363-71.
53. Ding, C., et al., Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe, 2013. 13(3): p. 265-76.
54. Weissman, Z., et al., The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A, 2000. 97(7): p. 3520-5.
55. Douglas, L.M., et al., Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. MBio, 2012. 3(1).
56. Reuss, O., et al., The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene, 2004. 341: p. 119-27.
57. Hsu, P.C., C.Y. Yang, and C.Y. Lan, Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence. Eukaryot Cell, 2011. 10(2): p. 207-25.
58. Russell, C.L. and A.J. Brown, Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol, 2005. 42(8): p. 676-83.
59. Gaur, N.A., et al., Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element. Biochem Biophys Res Commun, 2005. 332(1): p. 206-14.
60. Tsao, C.C., Y.T. Chen, and C.Y. Lan, A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol, 2009. 46(2): p. 126-36.
61. Park, Y.N. and J. Morschhauser, Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot Cell, 2005. 4(8): p. 1328-42.
62. Adamo, G.M., et al., Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact, 2012. 11: p. 1.
63. Madeo, F., et al., Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol, 1999. 145(4): p. 757-67.
64. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
65. Andres, M.T., M. Viejo-Diaz, and J.F. Fierro, Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents Chemother, 2008. 52(11): p. 4081-8.
66. Winge, D.R., et al., Sensors that mediate copper-specific activation and repression of gene expression. JBIC Journal of Biological Inorganic Chemistry, 1997. 2(1): p. 2-10.
67. Turner, R.B., et al., Solution structure of a zinc domain conserved in yeast copper-regulated transcription factors. Nat Struct Biol, 1998. 5(7): p. 551-5.
68. Marvin, M.E., P.H. Williams, and A.M. Cashmore, The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology, 2003. 149(Pt 6): p. 1461-74.
69. Wegner, S.V., et al., The tightly regulated copper window in yeast. Chemical Communications, 2011. 47(9): p. 2571-2573.
70. Hauser, N.C., et al., From experimental setup to data analysis in transcriptomics: copper metabolism in the human pathogen Candida albicans. J Biophotonics, 2009. 2(4): p. 262-8.
71. Yamaguchi-Iwai, Y., et al., Homeostatic Regulation of Copper Uptake in Yeast via Direct Binding of MAC1 Protein to Upstream Regulatory Sequences ofFRE1 and CTR1. Journal of Biological Chemistry, 1997. 272(28): p. 17711-17718.
72. Thiele, D.J. and D.H. Hamer, Tandemly duplicated upstream control sequences mediate copper-induced transcription of the Saccharomyces cerevisiae copper-metallothionein gene. Mol Cell Biol, 1986. 6(4): p. 1158-63.
73. Harrison, J.J., et al., Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl Environ Microbiol, 2007. 73(15): p. 4940-9.
74. Vaughn, V.J. and E.D. Weinberg, Candida albicans dimorphism and virulence: Role of copper. Mycopathologia, 1978. 64(1): p. 39-42.
75. Gebhart, D., A.K. Bahrami, and A. Sil, Identification of a copper-inducible promoter for use in ectopic expression in the fungal pathogen Histoplasma capsulatum. Eukaryot Cell, 2006. 5(6): p. 935-44.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *