帳號:guest(3.128.203.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱洵
作者(外文):Chiu, Hsun
論文名稱(中文):探討口腔癌細胞增生及移動的調控機制
論文名稱(外文):Regulation of oral cancer cell proliferation and migration
指導教授(中文):陳令儀
指導教授(外文):Chen, Linyi
口試委員(中文):王雯靜
劉俊揚
林素芳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:100080577
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:65
中文關鍵詞:口腔癌細胞增生訊息傳遞機制
相關次數:
  • 推薦推薦:0
  • 點閱點閱:372
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
口腔癌屬於頭頸癌的一種,絕大多數是由黏膜上的鱗狀細胞惡化而成,且為世界上第六好發的癌症。在台灣,嚼食檳榔與口腔癌的關係密切,約八成口腔癌患者有嚼食檳榔的習慣,而口腔癌的死亡率也在過去十年間成長了18%,使得口腔癌成為台灣亟需關注的一項疾病。口腔癌的轉移通常發生在病程的中後期,造成治療上的困難,連帶降低了患者的五年存活率。因此,釐清導致口腔癌細胞轉移的訊息傳遞機制,對口腔癌的治療應當能有正面的助益。在這篇論文當中,我使用了由原發位腫瘤分離培養出的口腔癌細胞株 ( OC3 cells ) 以及經篩選後較具有侵入性的兩株細胞,OC3-I5 及OC3-IV2 細胞株,以探討造成口腔癌細胞具有侵襲性的機制。實驗結果顯示,抑制MEK-ERK 及 PI3K-AKT 訊息傳遞時,OC3 細胞增生的速度會減緩,但OC3-I5 及OC3-IV2細胞的增生速度卻不會受到影響,表示在OC3-I5 及OC3-IV2 細胞中,存在其他機制以維持細胞的增生能力。因此我進一步證實了Sonic hedgehog 以及數種分泌出細胞外的因子能夠調控口腔癌細胞的增生能力。此外,磷酸化的ERK1/2 以及 AKT在OC3-IV2 細胞內表現量較高,並且能增加細胞的移動能力。由上述結果顯示,較具有侵入性的口腔癌細胞,能夠透過不同的訊息傳遞機制,維持自身的增生及移動能力,進而促進細胞癌化的發生。
Oral squamous cell carcinoma (OSCC) is a major subtype of head and neck squamous cell carcinoma (HNSCC), and also the sixth most common cancer worldwide. In Taiwan, the etiology of OSCC is highly associated with betel nut chewing, and the number of patients suffering from OSCC has increased 18% during the past ten years. Metastasis in OSCC is rare and usually occurs at late stages. Formation of invasive and metastatic tumor is associated with poor clinical prognosis with reduced five-year survival rate. Thus, understanding the mechanisms leading to metastasis of OSCC is crucial in treating the disease. In this thesis, I used oral carcinoma 3 (OC3) cells and two invasive cell lines, OC3-I5 and OC3-IV2 cells, to study the underlying mechanisms of cancer invasiveness. Our results suggested that inhibition of MEK-ERK and PI3K-AKT pathway blocked proliferation of OC3 cells but had no significant effect on the proliferation of OC3-I5 and OC3-IV2 cells. This result suggests that OC3-I5 and OC3-IV2 cells may have gained new mechanisms to sustain proliferation. To this end, we have identified sonic hedgehog (SHH) and a number of soluble factors are involved i¬n the regulation of OC3 cell proliferation. We also found increased phosphorylation of ERK1/2 and AKT in OC3-IV2 cells compared to OC3 and OC3-I5 cells. The increased phosphorylation of ERK1/2 and AKT contributes to the increased motility of OC3-IV2 cells. Together, these findings suggest that the more invasive OC3 cell lines use different mechanisms to ensure their proliferation and migration during oral cancer progression.
Abstract I
中文摘要 II
誌謝 III
Index V
Abbreviations IX
Introduction 1
Material and Methods 10
Reagents 10
Cell lines and cell culture 11
Cell proliferation assay 11
Cell migration assay 12
Protein preparation and western blot analysis 12
Total RNA purification, polymerase chain reaction (PCR) and semi-quantitative real-time PCR (Q-PCR) 13
Protein identification by LC-MS/MS 14
Statistical analysis 16
Results 17
Phosphorylation of ERK1/2 and AKT increased in OC3-IV2 cells 17
Inhibiting pERK1/2 and pAKT do not significantly affect proliferation of the invasive lines 18
Conditioned medium from OC3-IV2 cells partially rescues the reduced proliferation of OC3 cells in the presence of pERK1/2 or pAKT inhibitors 19
SHH promotes proliferation of OC3 cells 19
Other candidates of secreted soluble factors in OC3-IV2 cells 21
Inhibition of pERK1/2 and pAKT decrease the cell migration ability in OC3, OC3-I5 and OC3-IV2 cells 22
Expression level of MMPs is partially associated with ERK and AKT inhibition during cell migration of OC3, OC3-I5 and OC3-IV2 cells 23
Discussion 25
Figures 29
Figure 1. Protein expression in OC3, OECM1, and C9 cell lines 29
Figure 2. Effects of U0126 and LY294002 on the proliferation of OC3, OC3-I5 and OC3-IV2 cells 31
Figure 3. Conditioned medium from OC3-IV2 cells partially rescues the reduced proliferation of OC3 cells caused by ERK and AKT inhibition 33
Figure 4. Expression of SHH signaling in OC3, OC3-I5 and OC3-IV2 cells 36
Figure 5. SHH treatment increases the proliferation of OC3 cells 37
Figure 6. Possible candidates of secreted factors in OC3-IV2 cells 38
Figure 7. Migration of OC3, OC3-I5 and OC3-IV2 cells 40
Figure 8. Inhibition of ERK phosphorylation decreases the cell migration of OC3, OC3-I5 and OC3-IV2 cells 41
Figure 9. Inhibition of AKT phosphorylation decreases the cell migration of OC3, OC3-I5 and OC3-IV2 cells 43
Figure 10. Expression level of MMPs in OC3, OC3-I5 and OC3-IV2 cells 45
Figure 11. Expression level of MMPs after ERK1/2 inhibition in OC3, OC3-I5 and OC3-IV2 cells 47
Figure 12. Expression level of MMPs after AKT inhibition in OC3, OC3-I5 and OC3-IV2 cells 49
Table 51
Table 1. Gene expression analysis by cDNA microarray (by the lab of Professor Lu-Hai Wang) in OC3 and OC3-I5 cells 51
Appendix 52
Figure A1. Increase of Cyclin D1 expression in OC3-I5 and OC3-IV2 cells 52
Table A1. Possible candidates of secreted soluble factors in OC3 cells through LC-MS/MS analysis 54
Table A2. Possible candidates of secreted soluble factors in OC3-IV2 cells through LC-MS/MS analysis 56
Reference 57
Reference
1. Leemans, C.R., B.J.M. Braakhuis, and R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat Rev Cancer, 2011. 11(1): p. 9-22.
2. Kamangar, F., G.M. Dores, and W.F. Anderson, Patterns of Cancer Incidence, Mortality, and Prevalence Across Five Continents: Defining Priorities to Reduce Cancer Disparities in Different Geographic Regions of the World. Journal of Clinical Oncology, 2006. 24(14): p. 2137-2150.
3. Jemal, A., et al., Global cancer statistics. CA: A Cancer Journal for Clinicians, 2011. 61(2): p. 69-90.
4. Choi, S. and J.N. Myers, Molecular Pathogenesis of Oral Squamous Cell Carcinoma: Implications for Therapy. Journal of Dental Research, 2008. 87(1): p. 14-32.
5. Warnakulasuriya, S., G. Sutherland, and C. Scully, Tobacco, oral cancer, and treatment of dependence. Oral Oncology, 2005. 41(3): p. 244-260.
6. Ko YC, H.Y., Lee CH, Chen MJ, Lin LM, Tsai CC., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of Oral Pathology & Medicine, 1995. 24(10): p. 450-453.
7. Tímár, J., et al., Progression of head and neck squamous cell cancer. Cancer and Metastasis Reviews, 2005. 24(1): p. 107-127.
8. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006. 12(8): p. 895-904.
9. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Metastasis: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-572.
10. Yoneda, J., et al., Inhibition of tumor invasion and extracellular matrix degradation by ubenimex (bestatin). Clinical & Experimental Metastasis, 1992. 10(1): p. 49-59.
11. Saini, K.S., et al., Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treatment Reviews, (0).
12. Calvo, F., L. Agudo-Ibáñez, and P. Crespo, The Ras-ERK pathway: Understanding site-specific signaling provides hope of new anti-tumor therapies. BioEssays, 2010. 32(5): p. 412-421.
13. Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature, 2001. 411(6835): p. 355-365.
14. Schlessinger, J., Cell Signaling by Receptor Tyrosine Kinases. Cell, 2000. 103(2): p. 211-225.
15. Hunter, T., THE CROONIAN LECTURE 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1998. 353(1368): p. 583-605.
16. Huang, Y., et al., EGFR inhibition prevents in vitro tumor growth of salivary adenoid cystic carcinoma. BMC Cell Biology, 2013. 14(1): p. 13.
17. Brusevold, I.J., et al., Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: role of MEK/ERK, p38 and PI-3 kinase/Akt. Journal of Oral Pathology & Medicine, 2012. 41(7): p. 547-558.
18. Marsigliante, S., C. Vetrugno, and A. Muscella, CCL20 induces migration and proliferation on breast epithelial cells. Journal of Cellular Physiology, 2013: p. n/a-n/a.
19. Kim, J., Y.S. Kim, and J. Ko, CKβ8/CCL23 and its isoform CKβ8-1 induce up-regulation of cyclins via the Gi/Go protein/PLC/PKCδ/ERK leading to cell-cycle progression. Cytokine, 2010. 50(1): p. 42-49.
20. Matallanas, D. and P. Crespo, New druggable targets in the Ras pathway? Curr Opin Mol Ther, 2010. 12(6): p. 674-83.
21. Adjei, A.A., Blocking Oncogenic Ras Signaling for Cancer Therapy. Journal of the National Cancer Institute, 2001. 93(14): p. 1062-1074.
22. Rapp, U.R., et al., Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proceedings of the National Academy of Sciences, 1983. 80(14): p. 4218-4222.
23. Roskoski Jr, R., RAF protein-serine/threonine kinases: Structure and regulation. Biochemical and Biophysical Research Communications, 2010. 399(3): p. 313-317.
24. Wan, P.T.C., et al., Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 2004. 116(6): p. 855-867.
25. Matallanas, D., et al., Raf Family Kinases: Old Dogs Have Learned New Tricks. Genes & Cancer, 2011. 2(3): p. 232-260.
26. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-954.
27. Xing, M., BRAF mutation in thyroid cancer. Endocrine-Related Cancer, 2005. 12(2): p. 245-262.
28. Weisenberger, D.J., et al., CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet, 2006. 38(7): p. 787-793.
29. Pearson, G., et al., Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine Reviews, 2001. 22(2): p. 153-183.
30. McCubrey, J.A., et al., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2007. 1773(8): p. 1263-1284.
31. Zheng, C.F. and K.L. Guan, Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. Journal of Biological Chemistry, 1993. 268(15): p. 11435-9.
32. Vantaggiato, C., et al., ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. Journal of Biology, 2006. 5(5): p. 14.
33. Wei, G., et al., Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood, 2009. 114(5): p. 1123-1130.
34. Chen, H., et al., Extracellular Signal–Regulated Kinase Signaling Pathway Regulates Breast Cancer Cell Migration by Maintaining slug Expression. Cancer Research, 2009. 69(24): p. 9228-9235.
35. Pan, C.C., et al., Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation. Biochemical and Biophysical Research Communications, 2012. 424(3): p. 620-623.
36. Chang, F., et al., Signal transduction mediated by the Ras//Raf//MEK//ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 0000. 17(7): p. 1263-1293.
37. Sakamoto, K.M. and D.A. Frank, CREB in the Pathophysiology of Cancer: Implications for Targeting Transcription Factors for Cancer Therapy. Clinical Cancer Research, 2009. 15(8): p. 2583-2587.
38. Shanware, N.P., K. Bray, and R.T. Abraham, The PI3K, Metabolic, and Autophagy Networks: Interactive Partners in Cellular Health and Disease. Annual Review of Pharmacology and Toxicology, 2013. 53(1): p. 89-106.
39. Hoekstra, A.V., et al., Progestins Activate the AKT Pathway in Leiomyoma Cells and Promote Survival. Journal of Clinical Endocrinology & Metabolism, 2009. 94(5): p. 1768-1774.
40. Cardoso, A.P., et al., Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y1086, c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene, 2013.
41. Shen, X., et al., Chemokine Receptor CXCR4 Enhances Proliferation in Pancreatic Cancer Cells Through AKT and ERK Dependent Pathways. Pancreas, 2010. 39(1): p. 81-87 10.1097/MPA.0b013e3181bb2ab7.
42. Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501.
43. Katso, R., et al., CELLULAR FUNCTION OF PHOSPHOINOSITIDE 3-KINASES: Implications for Development, Immunity, Homeostasis, and Cancer. Annual Review of Cell and Developmental Biology, 2001. 17(1): p. 615-675.
44. Ribas, C., et al., The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007. 1768(4): p. 913-922.
45. Philp, A.J., et al., The Phosphatidylinositol 3′-kinase p85α Gene Is an Oncogene in Human Ovarian and Colon Tumors. Cancer Research, 2001. 61(20): p. 7426-7429.
46. Romashkova, J.A. and S.S. Makarov, NF-[kappa]B is a target of AKT in anti-apoptotic PDGF signalling. Nature, 1999. 401(6748): p. 86-90.
47. Liang, J., et al., PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med, 2002. 8(10): p. 1153-1160.
48. LoPiccolo, J., et al., Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resistance Updates, 2008. 11(1–2): p. 32-50.
49. Diehl, J.A., et al., Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes & Development, 1998. 12(22): p. 3499-3511.
50. KIM, D., et al., Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. The FASEB Journal, 2001. 15(11): p. 1953-1962.
51. Porter, J.A., K.E. Young, and P.A. Beachy, Cholesterol Modification of Hedgehog Signaling Proteins in Animal Development. Science, 1996. 274(5285): p. 255-259.
52. Goodrich, L.V. and M.P. Scott, Hedgehog and Patched in Neural Development and Disease. Neuron, 1998. 21(6): p. 1243-1257.
53. Ruiz i Altaba, A., P. Sanchez, and N. Dahmane, Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer, 2002. 2(5): p. 361-372.
54. di Magliano, M.P. and M. Hebrok, Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer, 2003. 3(12): p. 903-911.
55. Porter, J.A., et al., The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature, 1995. 374(6520): p. 363-366.
56. Hardy, R.Y. and M.D. Resh, Identification of N-terminal Residues of Sonic Hedgehog Important for Palmitoylation by Hedgehog Acyltransferase. Journal of Biological Chemistry, 2012. 287(51): p. 42881-42889.
57. Sun, L.-S., X.-F. Li, and T.-J. Li, PTCH1 and SMO Gene Alterations in Keratocystic Odontogenic Tumors. Journal of Dental Research, 2008. 87(6): p. 575-579.
58. Y. Katoh, M.K., Hedgehog Target Genes: Mechanisms of Carcinogenesis Induced by Aberrant Hedgehog Signaling Activation. Current Molecular Medicine, 2009. 9(7): p. 873-886.
59. Shahi, M., et al., Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma. BMC Cancer, 2010. 10(1): p. 614.
60. Regl, G., et al., Activation of the BCL2 Promoter in Response to Hedgehog/GLI Signal Transduction Is Predominantly Mediated by GLI2. Cancer Research, 2004. 64(21): p. 7724-7731.
61. Li, X., et al., Gli1 acts through Snail and E-cadherin to promote nuclear signaling by [beta]-catenin. Oncogene, 2007. 26(31): p. 4489-4498.
62. Katoh, Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (Review). International Journal of Molecular Medicine, 1998.
63. Yadav, R.K., et al., Recent Advances in Studies on Hydroxamates as Matrix Metalloproteinase Inhibitors: A Review. Current Medicinal Chemistry, 2011. 18(11): p. 1704-1722.
64. Ii, M., et al., Role of Matrix Metalloproteinase-7 (Matrilysin) in Human Cancer Invasion, Apoptosis, Growth, and Angiogenesis. Experimental Biology and Medicine, 2006. 231(1): p. 20-27.
65. Fillmore, H., T. VanMeter, and W. Broaddus, Membrane-type Matrix Metalloproteinases (MT-MMP)s: Expression and Function During Glioma Invasion. Journal of Neuro-Oncology, 2001. 53(2): p. 187-202.
66. Overall, C.M. and C. Lopez-Otin, Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer, 2002. 2(9): p. 657-672.
67. Egeblad, M. and Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002. 2(3): p. 161-174.
68. Van Tubergen, E.A., et al., Inactivation or loss of TTP promotes invasion in head and neck cancer via transcript stabilization and secretion of MMP9, MMP2 and IL-6. Clinical Cancer Research, 2013.
69. Bin Qiao, N.W.J., Jin Gao, Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-β1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol., 2010. 37(3): p. 663-668.
70. Ramos, D.M., et al., Expression of integrin β6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biology, 2002. 21(3): p. 297-307.
71. Yen, C.-Y., et al., Matrix metalloproteinases (MMP) 1 and MMP10 but not MMP12 are potential oral cancer markers. Biomarkers, 2009. 14(4): p. 244-249.
72. Inoue, H., et al., Podoplanin promotes cell migration via the EGF-Src-Cas pathway in oral squamous cell carcinoma cell lines. Journal of Oral Science, 2012. 54(3): p. 241-250.
73. Lee, M.-F., et al., N-acetylcysteine (NAC) inhibits cell growth by mediating the EGFR/Akt/HMG box-containing protein 1 (HBP1) signaling pathway in invasive oral cancer. Oral Oncology, 2013. 49(2): p. 129-135.
74. Kim, J., Y.S. Kim, and J. Ko, CKbeta8/CCL23 and its isoform CKbeta8-1 induce up-regulation of cyclins via the G(i)/G(o) protein/PLC/PKCdelta/ERK leading to cell-cycle progression. Cytokine, 2010. 50(1): p. 42-9.
75. Tsai, S.-T., et al., ENO1, a potential prognostic head and neck cancer marker, promotes transformation partly via chemokine CCL20 induction. European Journal of Cancer, 2010. 46(9): p. 1712-1723.
76. McGrory, K., C.M. Flaitz, and J.R. Klein, Chemokine changes during oral wound healing. Biochemical and Biophysical Research Communications, 2004. 324(1): p. 317-320.
77. Singh, A.P., et al., CXCL12/CXCR4 protein signaling axis induces sonic hedgehog expression in pancreatic cancer cells via extracellular regulated kinase- and Akt kinase-mediated activation of nuclear factor kappaB: implications for bidirectional tumor-stromal interactions. J Biol Chem, 2012. 287(46): p. 39115-24.
78. Lin, S.-C., et al., Establishment of OC3 oral carcinoma cell line and identification of NF-κB activation responses to areca nut extract. Journal of Oral Pathology & Medicine, 2004. 33(2): p. 79-86.
79. Yu, H. and R. Jove, The STATs of cancer [mdash] new molecular targets come of age. Nat Rev Cancer, 2004. 4(2): p. 97-105.
80. Bermudez, O., et al., Gli1 Mediates Lung Cancer Cell Proliferation and Sonic Hedgehog-Dependent Mesenchymal Cell Activation. PLoS ONE, 2013. 8(5): p. e63226.
81. Wang, Y.F., et al., Expression of hedgehog signaling molecules as a prognostic indicator of oral squamous cell carcinoma. Head & Neck, 2012. 34(11): p. 1556-1561.
82. Killian, P.H., et al., Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis, 2012. 33(12): p. 2507-2519.
83. Chen, J.S., et al., Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis, 2013. 34(1): p. 10-9.
84. Wu, M.-H., et al., Eicosapentaenoic acid and docosahexaenoic acid inhibit macrophage-induced gastric cancer cell migration by attenuating the expression of matrix metalloproteinase 10. The Journal of Nutritional Biochemistry, 2012. 23(11): p. 1434-1439.
85. Pan, F., et al., SDF-1alpha upregulation of MMP-2 is mediated by p38 MAPK signaling in pancreatic cancer cell lines. Mol Biol Rep, 2013.
86. Kenney, A.M. and D.H. Rowitch, Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Molecular and cellular biology, 2000. 20(23): p. 9055-9067.
87. Barnes, E.A., et al., Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J, 2001. 20(9): p. 2214-2223.
88. Ohe, G., et al., Effect of soluble factors derived from oral cancer cells on the production of interferon-γ from peripheral blood mononuclear cells following stimulation with OK-432. Oncology reports, 2013. 30(2): p. 945-951.
89. Campbell, I.L., Cytokine-mediated inflammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS. Brain Research Reviews, 2005. 48(2): p. 166-177.
90. Desouza, L.A., et al., Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain. Endocrinology, 2011. 152(5): p. 1989-2000.
91. Wang, X.-L., et al., Umbilical cord blood cells regulate endogenous neural stem cell proliferation via hedgehog signaling in hypoxic ischemic neonatal rats. Brain Research, 2013. 1518(0): p. 26-35.
92. Ohlrogge, W., et al., Generation and Characterization of Ecto-ADP-Ribosyltransferase ART2.1/ART2.2-Deficient Mice. Molecular and Cellular Biology, 2002. 22(21): p. 7535-7542.
93. Allache, R., et al., Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012. 94(3): p. 176-181.
94. Escobar, B., et al., Brick1 Is an Essential Regulator of Actin Cytoskeleton Required for Embryonic Development and Cell Transformation. Cancer Research, 2010. 70(22): p. 9349-9359.
95. Ferreras, C., et al., Endothelial Heparan Sulfate 6-O-Sulfation Levels Regulate Angiogenic Responses of Endothelial Cells to Fibroblast Growth Factor 2 and Vascular Endothelial Growth Factor. Journal of Biological Chemistry, 2012. 287(43): p. 36132-36146.
96. Nacht, M., et al., Netrin-4 regulates angiogenic responses and tumor cell growth. Experimental Cell Research, 2009. 315(5): p. 784-794.
97. Rong Zhenga, Z.Z., Xiaoyan Lv, JunMing Fan, Ye Chen, Yidong Wang, Ruizhi Tan, Yuhang Liu and Qin Zhoua, Polycystin-1 induced apoptosis and cell cycle arrest in G0/G1 phase in cancer cells. Cell Biology International, 2008. 32: p. 427-435.
98. Martha, E.A.-G., et al., Identification of Tetranectin as a Potential Biomarker for Metastatic Oral Cancer. International Journal of Molecular Sciences, 2010. 11(9).
99. Fan, N.-J., et al., Identification of the up-regulation of TP-alpha, collagen alpha-1(VI) chain, and S100A9 in esophageal squamous cell carcinoma by a proteomic method. Journal of Proteomics, 2012. 75(13): p. 3977-3986.
100. Opstal-van Winden, A., et al., Searching for early breast cancer biomarkers by serum protein profiling of pre-diagnostic serum; a nested case-control study. BMC Cancer, 2011. 11(1): p. 381.
101. Selvam, S. and B. Ogretmen, Sphingosine Kinase/Sphingosine 1-Phosphate Signaling in Cancer Therapeutics and Drug Resistance, in Sphingolipids in Disease, E. Gulbins and I. Petrache, Editors. 2013, Springer Vienna. p. 3-27.
102. Lee, E.-J., et al., Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: Involvement of the p21WAF1 expression. Cellular Signalling, 2013. 25(10): p. 2025-2038.
103. Yan, X., et al., Huaier Aqueous Extract Inhibits Ovarian Cancer Cell Motility via the AKT/GSK3β/β-Catenin Pathway. PLoS ONE, 2013. 8(5): p. e63731.
104. Wu, J., et al., GPR48, a poor prognostic factor, promotes tumor metastasis and activates β-catenin/TCF signaling in colorectal cancer. Carcinogenesis, 2013.
105. Zhang, J., et al., WAVE1 gene silencing via RNA interference reduces ovarian cancer cell invasion, migration and proliferation. Gynecologic Oncology, 2013. 130(2): p. 354-361.
106. Leong, P.L., et al., Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 4138-4143.
107. Couto, J.P., et al., STAT3 negatively regulates thyroid tumorigenesis. Proceedings of the National Academy of Sciences, 2012. 109(35): p. E2361–E2370.
108. de la Iglesia, N., et al., Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes & Development, 2008. 22(4): p. 449-462.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *