|
1. Yamada, Y. and H. Harashima, Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev, 2008. 60(13-14): p. 1439-62. 2. Smeitink, J., L. van den Heuvel, and S. DiMauro, The genetics and pathology of oxidative phosphorylation. Nat Rev Genet, 2001. 2(5): p. 342-52. 3. Andersson, S.G., et al., On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci, 2003. 358(1429): p. 165-77; discussion 177-9. 4. Taylor, R.W. and D.M. Turnbull, Mitochondrial DNA mutations in human disease. Nat Rev Genet, 2005. 6(5): p. 389-402. 5. Taanman, J.W., The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta, 1999. 1410(2): p. 103-23. 6. Lister, R., et al., Protein import into mitochondria: origins and functions today (review). Mol Membr Biol, 2005. 22(1-2): p. 87-100. 7. Carroll, J., et al., Bovine complex I is a complex of 45 different subunits. J Biol Chem, 2006. 281(43): p. 32724- 7. 8. Lazarou, M., et al., Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta, 2009. 1793(1): p. 78-88. 9. Hinchliffe, P. and L.A. Sazanov, Organization of iron- sulfur clusters in respiratory complex I. Science, 2005. 309(5735): p. 771-4. 10. Ohnishi, T., Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta, 1998. 1364(2): p. 186- 206. 11. Hyslop, S.J., et al., Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13. Genomics, 1996. 37(3): p. 375-80. 12. Sazanov, L.A. and P. Hinchliffe, Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science, 2006. 311(5766): p. 1430-6. 13. Ahlers, P.M., et al., Application of the obligate aerobic yeast Yarrowia lipolytica as a eucaryotic model to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY. Biochim Biophys Acta, 2000. 1459(2-3): p. 258-65. 14. Duarte, M., et al., Disruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis. Biochem J, 2002. 364(Pt 3): p. 833-9. 15. Copeland, J.M., et al., Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol, 2009. 19(19): p. 1591-8. 16. Leigh, D., Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry, 1951. 14(3): p. 216-21. 17. Dahl, H.H., Getting to the nucleus of mitochondrial disorders: identification of respiratory chain-enzyme genes causing Leigh syndrome. Am J Hum Genet, 1998. 63(6): p. 1594-7. 18. Lebon, S., et al., A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome. Mol Genet Metab, 2007. 92(1-2): p. 104- 8. 19. Sun, X., et al., Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci, 2006. 31(3): p. 189-96. 20. Kato, T., et al., Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry, 1997. 42(10): p. 871-5. 21. Iwamoto, K., M. Bundo, and T. Kato, Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet, 2005. 14(2): p. 241-53. 22. Andreazza, A.C., et al., Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry, 2010. 67(4): p. 360-8. 23. Knobloch, M. and I.M. Mansuy, Dendritic spine loss and synaptic alterations in Alzheimer's disease. Mol Neurobiol, 2008. 37(1): p. 73-82. 24. O'Brien, R.J. and P.C. Wong, Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci, 2011. 34: p. 185-204. 25. Liang, W.S., et al., Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A, 2008. 105(11): p. 4441-6. 26. Frykman, S., et al., Identification of two novel synaptic gamma-secretase associated proteins that affect amyloid beta-peptide levels without altering Notch processing. Neurochem Int, 2012. 61(1): p. 108-18. 27. Meluh, P.B. and D. Koshland, Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP- C. Mol Biol Cell, 1995. 6(7): p. 793-807. 28. Shen, Z., et al., UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics, 1996. 36(2): p. 271-9. 29. Okura, T., et al., Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol, 1996. 157(10): p. 4277-81. 30. Boddy, M.N., et al., PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene, 1996. 13(5): p. 971- 82. 31. Mahajan, R., et al., A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 1997. 88(1): p. 97- 107. 32. Bayer, P., et al., Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol, 1998. 280(2): p. 275-86. 33. Melchior, F., SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol, 2000. 16: p. 591-626. 34. Guo, D., et al., A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet, 2004. 36(8): p. 837-41. 35. Desterro, J.M., et al., Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem, 1999. 274(15): p. 10618-24. 36. Hannoun, Z., et al., Post-translational modification by SUMO. Toxicology, 2010. 278(3): p. 288-93. 37. Wilkinson, K.A. and J.M. Henley, Mechanisms, regulation and consequences of protein SUMOylation. Biochem J, 2010. 428(2): p. 133-45. 38. Saitoh, H. and J. Hinchey, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem, 2000. 275(9): p. 6252-8. 39. Yang, S.H., et al., An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J, 2006. 25(21): p. 5083-93. 40. Hietakangas, V., et al., PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A, 2006. 103(1): p. 45-50. 41. Gareau, J.R. and C.D. Lima, The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 2010. 11(12): p. 861-71. 42. Kerscher, O., SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep, 2007. 8(6): p. 550-5. 43. Matic, I., et al., Site-specific identification of SUMO- 2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell, 2010. 39(4): p. 641-52. 44. Li, S.J. and M. Hochstrasser, The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol, 2000. 20(7): p. 2367-77. 45. Li, S.J. and M. Hochstrasser, A new protease required for cell-cycle progression in yeast. Nature, 1999. 398(6724): p. 246-51. 46. Hickey, C.M., N.R. Wilson, and M. Hochstrasser, Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol, 2012. 13(12): p. 755-66. 47. Kolli, N., et al., Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochem J, 2010.430(2): p. 335-44. 48. Nacerddine, K., et al., The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell, 2005. 9(6): p. 769-79. 49. Dieckhoff, P., et al., Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast. Mol Microbiol, 2004. 51(5): p. 1375-87. 50. Vethantham, V., N. Rao, and J.L. Manley, Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev, 2008. 22(4): p. 499-511. 51. Morita, Y., et al., TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell, 2005. 16(11): p. 5433-44. 52. Verger, A., J. Perdomo, and M. Crossley, Modification with SUMO. A role in transcriptional regulation. EMBO Rep, 2003. 4(2): p. 137-42. 53. Gill, G., Something about SUMO inhibits transcription. Curr Opin Genet Dev, 2005. 15(5): p. 536-41. 54. Hong, Y., et al., Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem, 2001. 276(43): p. 40263-7. 55. Goodson, M.L., et al., Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem, 2001. 276(21): p. 18513-8. 56. Stielow, B., et al., SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO Rep, 2008. 9(9): p. 899-906. 57. Eloranta, J.J. and H.C. Hurst, Transcription factor AP-2 interacts with the SUMO-conjugating enzyme UBC9 and is sumolated in vivo. J Biol Chem, 2002. 277(34): p. 30798- 804. 58. Seufert, W., B. Futcher, and S. Jentsch, Role of a ubiquitin-conjugating enzyme in degradation of S- and M- phase cyclins. Nature, 1995. 373(6509): p. 78-81. 59. Shayeghi, M., et al., Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res, 1997. 25(6): p. 1162-9. 60. al-Khodairy, F., et al., The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci, 1995. 108 ( Pt 2): p. 475-86. 61. Branzei, D., et al., Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell, 2006. 127(3): p. 509-22. 62. Galanty, Y., et al., Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature, 2009. 462(7275): p. 935-9. 63. Gali, H., et al., Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res, 2012. 40(13): p. 6049-59. 64. Eladad, S., et al., Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet, 2005. 14(10): p. 1351-65. 65. Altmannova, V., et al., Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res, 2010. 38(14): p. 4708-21. 66. Lallemand-Breitenbach, V. and H. de The, PML nuclear bodies. Cold Spring Harb Perspect Biol, 2010. 2(5): p. a000661. 67. Desterro, J.M., M.S. Rodriguez, and R.T. Hay, SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell, 1998. 2(2): p. 233-9. 68. Klenk, C., et al., SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem, 2006. 281(13): p. 8357-64. 69. Praefcke, G.J., K. Hofmann, and R.J. Dohmen, SUMO playing tag with ubiquitin. Trends Biochem Sci, 2012. 37(1): p. 23-31. 70. Hay, R.T., SUMO: a history of modification. Mol Cell, 2005. 18(1): p. 1-12. 71. Martin, S., et al., SUMOylation regulates kainate- receptor-mediated synaptic transmission. Nature, 2007. 447(7142): p. 321-5. 72. Hardeland, U., et al., Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J, 2002. 21(6): p. 1456-64. 73. Harder, Z., R. Zunino, and H. McBride, Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol, 2004. 14(4): p. 340-5. 74. Figueroa-Romero, C., et al., SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J, 2009. 23(11): p. 3917-27. 75. Guo, C., et al., SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J, 2013. 32(11): p. 1514-28. 76. Rytinki, M.M. and J.J. Palvimo, SUMOylation attenuates the function of PGC-1alpha. J Biol Chem, 2009. 284(38): p. 26184-93. 77. Cai, R., et al., SUMO-specific protease 1 regulates mitochondrial biogenesis through PGC-1alpha. J Biol Chem, 2012. 287(53): p. 44464-70. 78. Pichler, A., et al., SUMO modification of the ubiquitin- conjugating enzyme E2-25K. Nat Struct Mol Biol, 2005. 12(3): p. 264-9. 79. Jang, M.S., S.W. Ryu, and E. Kim, Modification of Daxx by small ubiquitin-related modifier-1. Biochem Biophys Res Commun, 2002. 295(2): p. 495-500. 80. Xu, K., et al., Modification of nonstructural protein 1 of influenza A virus by SUMO1. J Virol, 2011. 85(2): p. 1086-98. 81. Hoege, C., et al., RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 2002. 419(6903): p. 135-41. 82. Mukhopadhyay, A., et al., Precursor protein is readily degraded in mitochondrial matrix space if the leader is not processed by mitochondrial processing peptidase. J Biol Chem, 2007. 282(51): p. 37266-75. 83. Felipo, V. and S. Grisolia, Precursors of mitochondrial proteins are degraded in the cytosol at different rates. FEBS Lett, 1986. 209(2): p. 227-30. 84. Kim, M.J., I.V. Chia, and F. Costantini, SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. FASEB J, 2008. 22(11): p. 3785-94. 85. de Cristofaro, T., et al., Pax8 protein stability is controlled by sumoylation. J Mol Endocrinol, 2009. 42(1): p. 35-46. 86. Koc, E.C. and H. Koc, Regulation of mammalian mitochondrial translation by post-translational modifications. Biochim Biophys Acta, 2012. 1819(9-10): p. 1055-66. 87. Meulmeester, E., et al., Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell, 2008. 30(5): p. 610-9. 88. Lin, D.Y., et al., Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell, 2006. 24(3): p. 341-54. 89. Vanhatupa, S., et al., MAPK-induced Ser727 phosphorylation promotes SUMOylation of STAT1. Biochem J, 2008. 409(1): p. 179-85. 90. Terui, Y., et al., Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem, 2004. 279(27): p. 28257-65. 91. Stahl, A., et al., Rapid degradation of the presequence of the f1beta precursor of the ATP synthase inside mitochondria. Biochem J, 2000. 349 Pt 3: p. 703-7. 92. Kim, W., et al., Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell, 2011. 44(2): p. 325-40. 93. Zhang, F.P., et al., Sumo-1 function is dispensable in normal mouse development. Mol Cell Biol, 2008. 28(17): p. 5381-90. 94. Zhong, S., et al., Role of SUMO-1-modified PML in nuclear body formation. Blood, 2000. 95(9): p. 2748-52. 95. Weisshaar, S.R., et al., Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett, 2008. 582(21- 22): p. 3174-8. 96. Chou, T. F. (2009) Human mitochondrial complex I NDUFS7 subunits has a dual distribution both in mitochondria and nuclei. Master Thesis, National Ting Hua University. 97. Jaokar TM, Sharma R, Suresh CG (2013) Structural Effects of Leigh Syndrome Mutations on the Function of Human MitochondrialComplex-I Q module. Biochem Physiol S2.
|