帳號:guest(3.149.255.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江杰鵬
作者(外文):Jiang, Jie-Peng
論文名稱(中文):探討神經起源的Thsd7a在血管新生過程中調控內皮尖端與莖稈細胞功能的分子機制
論文名稱(外文):The molecular mechanism of neuronal THSD7A on endothelial tip and stalk cell selection during angiogenesis
指導教授(中文):莊永仁
指導教授(外文):Chuang, Yung-Jen
口試委員(中文):張壯榮
王文德
口試委員(外文):Chang, Chuang-Rung
Wang, Wen-Der
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080566
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:44
中文關鍵詞:斑馬魚血管新生神經血管交互作用
相關次數:
  • 推薦推薦:0
  • 點閱點閱:92
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
在發育過程中內皮細胞的引導在血管網絡的擴張是非常重要的,而在生長中的新生血管芽中會發生誘導內皮細胞分化為“tip”與“stalk”細胞,這個機制參與了內皮細胞的引導過程,然而tip細胞位於新生血管芽上的頂端,能反應環境中的引導因子並引導內皮細胞的移動,同時另一特化後細胞stalk細胞位於tip細胞的後方,它能反應引導因子的訊號並且進行細胞增生,使新生血管芽得以進行生長,然而這種在新生血管芽中擁有的層級式結構組織對於正常或病變情況下血管的型態發生是非常重要的.
  在過去我們所做的研究中發現一個在脊椎動物中具高度保留特性的蛋白“THSD7A”被稱作凝血酶敏感蛋白區域包含蛋白7,而在利用斑馬魚為模式生物的研究中,我們發現THSD7A能夠引導內皮細胞的移動和血管形成,另外我們也發現到當在斑馬魚上使用morpholino降低THSD7A的表現時,血管新生中的intersegmental vessels 和parachordal chain血管會產生缺失,然而在血管發育的過程中THSD7A是否在調控tip和stalk細胞的分化上扮演了重要的角色,這個問題始終是未知的.
  在我們使用斑馬魚作為我們的研究工具後,我們發現經由THSD7A處理後的幼魚所產生的表現型態非常類似於notch-delta like 4 (dll4)訊息傳遞路徑缺陷的表現型,這暗示了在發育過程中THSD7A很有可能是藉由調控notch- dll4訊息傳遞來影響血管發育,在Real Time-quantitative PCR實驗中顯示notch1b和它下游所調控的VEGFR2/3都會受到降低THSD7A表現的影響而表現量下降,此外在原位雜交的實驗中也發現notch1b在小腦脊索和心臟上的表現模式會受到抑制THSD7A表現因而產生錯亂的表現模式,這些結果指出了斑馬魚的THSD7A在發育過程中會藉由notch- dll4訊息傳遞路徑來調控tip和stalk細胞的分化決定,有趣的是我們發現在THSD7A表現受到抑制的幼魚中神經的生長也會產生缺陷,顯示了THSD7A與notch訊息傳遞在神經血管交互作用中的關聯性
  總而言之,我們的結果強烈地顯示THSD7A在血管新生過程中很有可能是調控tip和stalk細胞的分化選擇上重要的調控者,這些發現在未來血管新生相關疾病上可以提供發展THSD7A標靶治療的機會.
Endothelial guidance is very important for vascular network expansion during development. It involves the induction of endothelial cell (EC) into tip and stalk cell potential at the growing angiogenic sprout. The tip cell is located at the leading edge of growing sprout, which responds to guidance cues to direct the EC migration. Meanwhile, the stalk cell trails behind the tip cell proliferates in response to guidance cues. The hierarchical organization of sprouting vessels is critical for vascular morphogenesis under normal or diseased conditions.
Previously, our group has discovered a novel protein called thrombospondin type I domain containing 7A (THSD7A) that is highly conserved among the vertebrates. During zebrafish vascular development, it is a guidance cues required for directing EC migration. We have also shown Thsd7a is related to the growth path finding of angiogenic intersegmental vessels (ISV) and parachordal chain (PAC), as morpholino (MO) knockdown of Thsd7a gene expression affects ISV sprouting and PAC patterning. However, whether Thsd7a has a role in regulating tip and stalk selection during vascular development is unknown.
Using transgenic zebrafish as the research system, we found THSD7A morphant displayed distinct phenotypes that are very similar to the phenotype after loss of notch-delta like 4 (dll4) signaling. This implies thsd7a may involve in the notch-dll4 signaling pathway during vascular development. Real Time-quantitative PCR data further showed that expression levels of notch1b and its downstream targets, VEGFR2/3, were down-regulated in the thsd7a morphants. In addition, in situ hybridization analysis on the thsd7a morphants revealed notch1b has an aberrant expression pattern in hindbrain, spinal cord and heart. These data indicated that zebrafish Thsd7a could regulate endothelial tip and stalk cell selection via notch-dll4 signaling during development. Interestingly, we found knockdown of Thsd7a also affect neuronal growth in the spinal cord, which suggest the association of Thsd7a and notch signaling in neurovascular interactions. Taken together, our data strongly suggests that Thsd7a may be a regulator on endothelial tip and stalk cell selection during angiogenesis. These findings could offer an opportunity for developing THSD7A targeting therapy in angiogenesis-related diseases in the future.
摘要……………………………………………………………………………………I
Abstract ……...………………………………………………………………………III
致謝……………………………………………………………………………..….....V
Table of contents ………………………………..………………………….……...VI
List of figures ………………..…………………………………..………………….VII
List of abbreviations….………………………………..………………………..….VIII
1. Introduction ………………………………………...…………………………….1
1.1 Angiogenesis…………………...……………………………….……………..1
1.2 Tip and stalk cell decisions………………………………...………………….1
1.3 The Notch signaling pathway………………………………..……………….2
1.4 Notch and VEGFRs interactions during angiogenesis………………………...3
1.5 Neurogenesis…………………………………………………………………..4
1.6 Neurovascular interaction……………………………………………………..4
1.7 Thsd7a is a novel angioenurin…………………………………………………5
2. Materials and methods …………………………………………………………7
2.1 Zebrafish stocks …………………………………………………………….....7
2.2 Cloning of the zebrafish thsd7a gene and create thsd7a transgenic zebrafish ..7
2.3 Morpholino microinjection and mRNA overexpression...…………………....8
2.4 Whole-mount in situ hybridization…………...…………………………….....9
2.5 Real Time-quantitative PCR analysis…………...…………………………...10
2.6 Western blot…………...……………………………………………………10
3. Results…………...…………………………………………………………….12
3.1 Zebrafish thsd7a is required for normal cardiovascular development……….12
3.2 Zebrafish thsd7a regulate notch1b expression to mediate tip and stalk cell selection………………………….…………………………………………...13
3.2.1 Phenotype comparison between thsd7a and notch1b morphant….13
3.2.2 Effect on notch-dll4 signaling pathway components in thsd7a morpthans…………………………………………………………………….14
3.3 Zebrafish tip and stalk cell marker in thsd7a morphants……………………..16
3.4 Function of thsd7a in nervous system………………………………………..17
3.4.1 Distribution of thsd7a in nervous system during development………17
3.4.2 Effect of neurons in thsd7a morphants……………………………….18
4. Discussions…………...…………………………………………………………..20
4.1 Thsd7a is an angioneurin expressed in central nervous system and required for vascular and nervus development.…………………………………………....20
4.2 Dynamic tip and stalk cell growth in thsd7a morphants…….……..…..…….21
4.3 Thsd7a is linked to notch1a signaling..…..…………………………………..22
4.4 Function of tip and stalk cell in thsd7a morphant…..…..……………………22
4.5 The spatiotemporal expression of thsd7a………………………………….24
4.6 The relationship between neurovascular interaction and Thsd7a………..…..25
5. References…………...…………………………………...………………………27


List of figures

Figure 1. Zebrafish Thsd7a knockdown affects angiogenesis and heart development
Figure 2. Quantification of zebrafish phenotypes after thsd7a knockdown by morpholino treatment.
Figure 3. Overexpression of zebrafish thsd7a reduced segmental vessel sprouting
Figure 4. Knockdown of Thsd7a affected expression of genes related to Notch-dll4 signaling pathway
Figure 5. Thsd7a knockdown resulted in aberrant Notch1b expression pattern
Figure 6. Expression of endothelial tip and stalk cell markers during angiogenesis was affected by Thsd7a knockdown
Figure 7. The generation and characterization of thsd7a transgenic zebrafish Tg(thsd7a:GFP)
Figure 8. Knockdown of thsd7a affected neuron growth in the spinal cord
Figure 9. Proposed molecular mechanism of thsd7a on tip and stalk


List of supporting information

Supplementary figure 1. The tip cells on ISV showed protrusions without specific orientation in thsd7a knockdown zebrafsih
Supplementary figure 2. Loss of thsd7a impairs PAC, RoP axons and associated secondary motoneuron axons formation

List of Table

Table 1. Primer list of Real Time-quantitative PCR analysis

1. Adams, R.H., and Eichmann, A. (2010). Axon guidance molecules in vascular patterning. Cold Spring Harbor perspectives in biology 2, a001875.
2. Andersson, E.R., Sandberg, R., and Lendahl, U. (2011). Notch signaling: simplicity in design, versatility in function. Development 138, 3593-3612.
3. Appel, B., Givan, L.A., and Eisen, J.S. (2001). Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development. BMC developmental biology 1, 13.
4. Bautch, V.L., and James, J.M. (2009). Neurovascular development: The beginning of a beautiful friendship. Cell adhesion & migration 3, 199-204.
5. Begley, D.J., and Brightman, M.W. (2003). Structural and functional aspects of the blood-brain barrier. Progress in drug research Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques 61, 39-78.
6. Bray, S., and Bernard, F. (2010). Notch targets and their regulation. Current topics in developmental biology 92, 253-275.
7. Carmeliet, P., and Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature 436, 193-200.
8. Childs, S., Chen, J.N., Garrity, D.M., and Fishman, M.C. (2002). Patterning of angiogenesis in the zebrafish embryo. Development 129, 973-982.
9. Court, D.L., Sawitzke, J.A., and Thomason, L.C. (2002). Genetic engineering using homologous recombination. Annual review of genetics 36, 361-388.
10. Covassin, L.D., Villefranc, J.A., Kacergis, M.C., Weinstein, B.M., and Lawson, N.D. (2006). Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proceedings of the National Academy of Sciences of the United States of America 103, 6554-6559.
11. De Smet, F., Segura, I., De Bock, K., Hohensinner, P.J., and Carmeliet, P. (2009). Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arteriosclerosis, thrombosis, and vascular biology 29, 639-649.
12. del Toro, R., Prahst, C., Mathivet, T., Siegfried, G., Kaminker, J.S., Larrivee, B., Breant, C., Duarte, A., Takakura, N., Fukamizu, A., et al. (2010). Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116, 4025-4033.
13. Gerety, S.S., and Anderson, D.J. (2002). Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397-1410.
14. Gerety, S.S., Wang, H.U., Chen, Z.F., and Anderson, D.J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Molecular cell 4, 403-414.
15. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology 161, 1163-1177.
16. Geudens, I., Herpers, R., Hermans, K., Segura, I., Ruiz de Almodovar, C., Bussmann, J., De Smet, F., Vandevelde, W., Hogan, B.M., Siekmann, A., et al. (2010). Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arteriosclerosis, thrombosis, and vascular biology 30, 1695-1702.
17. Hellstrom, M., Phng, L.K., and Gerhardt, H. (2007a). VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell adhesion & migration 1, 133-136.
18. Hellstrom, M., Phng, L.K., Hofmann, J.J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A.K., Karlsson, L., Gaiano, N., et al. (2007b). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776-780.
19. Herbert, S.P., and Stainier, D.Y. (2011). Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nature reviews Molecular cell biology 12, 551-564.
20. Kageyama, R., and Ohtsuka, T. (1999). The Notch-Hes pathway in mammalian neural development. Cell research 9, 179-188.
21. Kantor, D.B., Chivatakarn, O., Peer, K.L., Oster, S.F., Inatani, M., Hansen, M.J., Flanagan, J.G., Yamaguchi, Y., Sretavan, D.W., Giger, R.J., et al. (2004). Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961-975.
22. Kim, C.H., Bae, Y.K., Yamanaka, Y., Yamashita, S., Shimizu, T., Fujii, R., Park, H.C., Yeo, S.Y., Huh, T.L., Hibi, M., et al. (1997). Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neuroscience letters 239, 113-116.
23. Kim, C.H., Ueshima, E., Muraoka, O., Tanaka, H., Yeo, S.Y., Huh, T.L., and Miki, N. (1996). Zebrafish elav/HuC homologue as a very early neuronal marker. Neuroscience letters 216, 109-112.
24. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 203, 253-310.
25. Kuo, M.W., Wang, C.H., Wu, H.C., Chang, S.J., and Chuang, Y.J. (2011). Soluble THSD7A is an N-glycoprotein that promotes endothelial cell migration and tube formation in angiogenesis. PloS one 6, e29000.
26. Lamalice, L., Le Boeuf, F., and Huot, J. (2007). Endothelial cell migration during angiogenesis. Circulation research 100, 782-794.
27. Lamar, E., Deblandre, G., Wettstein, D., Gawantka, V., Pollet, N., Niehrs, C., and Kintner, C. (2001). Nrarp is a novel intracellular component of the Notch signaling pathway. Genes & development 15, 1885-1899.
28. Lawson, N.D., and Weinstein, B.M. (2002). Arteries and veins: making a difference with zebrafish. Nature reviews Genetics 3, 674-682.
29. Leslie, J.D., Ariza-McNaughton, L., Bermange, A.L., McAdow, R., Johnson, S.L., and Lewis, J. (2007). Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839-844.
30. Liu, K.S., and Fetcho, J.R. (1999). Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23, 325-335.
31. Lobov, I.B., Renard, R.A., Papadopoulos, N., Gale, N.W., Thurston, G., Yancopoulos, G.D., and Wiegand, S.J. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America 104, 3219-3224.
32. Luo, Y., Raible, D., and Raper, J.A. (1993). Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217-227.
33. Mancuso, M.R., Kuhnert, F., and Kuo, C.J. (2008). Developmental angiogenesis of the central nervous system. Lymphatic research and biology 6, 173-180.
34. Milan, D.J., Giokas, A.C., Serluca, F.C., Peterson, R.T., and MacRae, C.A. (2006). Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development 133, 1125-1132.
35. Miller, G. (2009). Origins. On the origin of the nervous system. Science 325, 24-26.
36. Nikolopoulos, S.N., and Giancotti, F.G. (2005). Netrin-integrin signaling in epithelial morphogenesis, axon guidance and vascular patterning. Cell cycle 4, e131-135.
37. Noguera-Troise, I., Daly, C., Papadopoulos, N.J., Coetzee, S., Boland, P., Gale, N.W., Lin, H.C., Yancopoulos, G.D., and Thurston, G. (2006). Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032-1037.
38. Park, H.C., Kim, C.H., Bae, Y.K., Yeo, S.Y., Kim, S.H., Hong, S.K., Shin, J., Yoo, K.W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Developmental biology 227, 279-293.
39. Phng, L.K., and Gerhardt, H. (2009). Angiogenesis: a team effort coordinated by notch. Developmental cell 16, 196-208.
40. Phng, L.K., Potente, M., Leslie, J.D., Babbage, J., Nyqvist, D., Lobov, I., Ondr, J.K., Rao, S., Lang, R.A., Thurston, G., et al. (2009). Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Developmental cell 16, 70-82.
41. Ruhrberg, C., and Bautch, V.L. (2013). Neurovascular development and links to disease. Cellular and molecular life sciences : CMLS 70, 1675-1684.
42. Sainson, R.C., Aoto, J., Nakatsu, M.N., Holderfield, M., Conn, E., Koller, E., and Hughes, C.C. (2005). Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19, 1027-1029.
43. Sato, T., Takahoko, M., and Okamoto, H. (2006). HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44, 136-142.
44. Sciume, G., Santoni, A., and Bernardini, G. (2010). Chemokines and glioma: invasion and more. Journal of neuroimmunology 224, 8-12.
45. Segura, I., De Smet, F., Hohensinner, P.J., Ruiz de Almodovar, C., and Carmeliet, P. (2009). The neurovascular link in health and disease: an update. Trends in molecular medicine 15, 439-451.
46. Shin, J., Poling, J., Park, H.C., and Appel, B. (2007). Notch signaling regulates neural precursor allocation and binary neuronal fate decisions in zebrafish. Development 134, 1911-1920.
47. Siekmann, A.F., and Lawson, N.D. (2007). Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781-784.
48. Suchting, S., Freitas, C., le Noble, F., Benedito, R., Breant, C., Duarte, A., and Eichmann, A. (2007). The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proceedings of the National Academy of Sciences of the United States of America 104, 3225-3230.
49. Tam, S.J., and Watts, R.J. (2010). Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annual review of neuroscience 33, 379-408.
50. Tammela, T., Zarkada, G., Wallgard, E., Murtomaki, A., Suchting, S., Wirzenius, M., Waltari, M., Hellstrom, M., Schomber, T., Peltonen, R., et al. (2008). Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656-660.
51. Taoufik, E., and Probert, L. (2008). Ischemic neuronal damage. Current pharmaceutical design 14, 3565-3573.
52. Therapontos, C., and Vargesson, N. (2010). Zebrafish notch signalling pathway mutants exhibit trunk vessel patterning anomalies that are secondary to somite misregulation. Developmental dynamics : an official publication of the American Association of Anatomists 239, 2761-2768.
53. Ulrich, F., Ma, L.H., Baker, R.G., and Torres-Vazquez, J. (2011). Neurovascular development in the embryonic zebrafish hindbrain. Developmental biology 357, 134-151.
54. Wallace, C.S., Withers, G.S., Farnand, A., Lobingier, B.T., and McCleery, E.J. (2011). Evidence that angiogenesis lags behind neuron and astrocyte growth in experience-dependent plasticity. Developmental psychobiology 53, 435-442.
55. Wang, C.H., Chen, I.H., Kuo, M.W., Su, P.T., Lai, Z.Y., Wang, C.H., Huang, W.C., Hoffman, J., Kuo, C.J., You, M.S., et al. (2011). Zebrafish Thsd7a is a neural protein required for angiogenic patterning during development. Developmental dynamics : an official publication of the American Association of Anatomists 240, 1412-1421.
56. Wang, C.H., Su, P.T., Du, X.Y., Kuo, M.W., Lin, C.Y., Yang, C.C., Chan, H.S., Chang, S.J., Kuo, C., Seo, K., et al. (2010). Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation. Journal of cellular physiology 222, 685-694.
57. Zacchigna, S., Ruiz de Almodovar, C., and Carmeliet, P. (2008). Similarities between angiogenesis and neural development: what small animal models can tell us. Current topics in developmental biology 80, 1-55.
58. Zhang, B., Dietrich, U.M., Geng, J.G., Bicknell, R., Esko, J.D., and Wang, L. (2009). Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 114, 4300-4309.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *