帳號:guest(18.117.231.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳正益
論文名稱(中文):人類抗菌胜肽LL-37對鮑氏不動桿菌作用機制之研究
論文名稱(外文):Studying the mode of action of human antimicrobial peptide LL-37 on Acinetobacter baumannii
指導教授(中文):藍忠昱
口試委員(中文):高茂傑
賴志河
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:100080561
出版年(民國):102
畢業學年度:102
語文別:中文英文
論文頁數:71
中文關鍵詞:鮑氏不動桿菌LL-37
相關次數:
  • 推薦推薦:0
  • 點閱點閱:155
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鮑氏不動桿菌是一種格蘭氏陰性的球桿菌,且為人類伺機感染病菌。在正常人體中共生存在,但在免疫能力低下的病人容易起而致病,嚴重則可能導致死亡。近年來全球出現許多不同的多重抗藥性鮑氏不動桿菌菌株,在臨床治療上造成了很大的困難。例如對抗鮑氏不動桿菌最後一道防線之藥物Tigecycline及Colistin,目前也已經有抗藥性菌株的出現,因此必需儘速尋找或研發新抗生素或其他有效抗菌物質,以克服鮑氏不動桿菌的感染問題。本研究中,我們發現人類抗菌胜肽LL-37能夠有效殺害鮑氏不動桿菌,並且在非致死劑量之下能抑制細菌貼附及移動能力。由鮑氏不動桿菌細胞萃取的脂多醣體(Lipopolysaccharide)能夠有效和LL-37競爭,使得細菌貼附能力得以恢復。除此之外、脂多醣體缺失的鮑氏不動桿菌變異株對LL-37有較高的抗性,推測LL-37有可能透過與脂多醣體之接合反應而造成細菌貼附能力之下降。除了脂多醣體,我們也發現LL-37會結合到鮑氏不動桿菌的外膜蛋白A (OmpA)。雖然外膜蛋白A和細菌貼附能力有很大相關,但和LL-37造成的貼附能力下降可能沒有直接的關聯。在實驗中也發現脂多醣體和外膜蛋白A的缺陷都會導致菌体對LL-37的敏感性。綜合上述結果,LL-37可能是一個具有潛力且未來能夠用於治療鮑氏不動桿菌感染的新試劑。
Acinetobacter baumannii is a Gram-negative coccobacillus and is a leading nosocomial pathogen worldwide. Recently, emergence of multidrug resistant A. baumannii has become a great threat to healthcare. Strains resist to the last line of anti-mocrobial agents, tigecycline and colistin, were appeared. Therefore, developing new drugs to treat A. baumannii infections is urgently needed. In this work, a human antimicrobial peptide LL-37 was evaluated for its effects on A. baumannii. We found that LL-37 kills A. baumannii efficiently and reduces cell adhesion and motility. Lipopolysaccharides extracted from A. baumannii cell surface can rescue LL37-mediated inhibition of cell adhesion. Moreover, far-western analysis indicated that LL-37 binds to outer membrane OmpA protein of A. baumannii (AbOmpA), but this binding seems not to correlate with the inhibitory effect on cell adhesion. However, both LPS and AbOmpA were related to sensitivity of A. baumannii to LL-37. Together, this study suggested that LL-37 may be a potential agent in the future treatment of A. baumannii infections.
Table of Contents
摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Tables VII
List of Figures VIII
List of Supplemental Figure IX
1. Introduction 1
1.1 Acinetobacter baumannii: background and its significance in human health 1
1.2 Antimicrobial peptides 2
1.3 LL-37: an important human AMP 3
1.4 Drug resistance of A. baumannii 4
1.4.1 Decreasing cell permeability 4
1.4.2 Enzyme inactivation 4
1.4.3 Alteration of drug target sites 5
1.4.4 Efflux pumps 5
1.5 Virulence factors of A. baumannii 5
1.5.1 Surface hydrophobicity, acinetobactin and phospholipase D (PLD) 6
1.5.2 Penicillin-binding protein 7/8 (PBP-7/8), RecA and capsule 6
1.5.3 A. baumannii adhesion 7
1.5.4 A. baumannii OmpA (AbOmpA) porin protein 7
1.6 Aim of this study 7
2. Material and methods 9
2.1 Peptides and reagents 9
2.2 A. baumannii strains, media, and growth conditions 9
2.3 Assays for anti-Acinetobacter activity of LL-37 10
2.4 Assay for A. baumannii adhesion 10
2.5 Assay for A. baumannii motility 11
2.6 Assay for LL-37 and A. baumannii binding 11
2.6.1 Flow cytometric analysis 11
2.6.2 Immunofluorescence staining 12
2.7 OMPs extraction and western blot 12
2.7.1 A. baumannii OMPs extraction 12
2.7.2 Far-western analysis 13
2.7.3 Western analysis 14
2.8 AbOmpA/LL-37 binding assay 14
2.8.1 BA-LL37 pull-down assay 14
2.8.2 Coomassie Blue stain 15
2.9 Identification of LL37-binding protein(s) 15
2.9.1 MOLDI-TOF 15
2.9.2 LL37-AbOmpA binding prediction 17
2.10 Preparation of lipopolysaccharides (LPS) from A. baumannii 17
2.11 ELISA assay for LL-37/OmpA164-181 and LL-37/OmpA74-84 association 18
2.12 Genomic DNA extraction 19
2.13 Construction of ompA-deleted mutant of A. baumannii 20
2.14 RNA isolation and reverse transcription -PCR 21
2.15 Expression, purification, and refolding of recombinant AbOmpA 22
2.16 Cytotoxic activity of refolded AbOmpA 23
3. Results 25
3.1 LL-37 kills A. baumannii in a dosage-dependent manner 25
3.2 LL-37 inhibits A. baumannii adhesion and motility 25
3.3 LL-37 binds to A. baumannii cells 26
3.4 The effects of LL-37 on A. baumannii are specific 27
3.5 AbOmpA is a potential binding target of LL-37 28
3.6 LL-37 associated with certain regions of AbOmpA 29
3.7 OmpA is involved in A. baumannii adhesion 30
3.8 LL37-AbOmpA interaction 31
3.9 LPS represents another binding target of LL-37 32
3.10 Results of pull-down assay and MALDI-TOF 33
4. Discussion 34
5. References 39
1. Baumann, P., Isolation of Acinetobacter from soil and water. J Bacteriol, 1968. 96(1): p. 39-42.
2. Mah, M.W., et al., Outbreak of Acinetobacter baumannii in an intensive care unit associated with tracheostomy. Am J Infect Control, 2001. 29(5): p. 284-8.
3. Fournier, P.E. and H. Richet, The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis, 2006. 42(5): p. 692-9.
4. Fontana, C., et al., Acinetobacter baumannii in intensive care unit: a novel system to study clonal relationship among the isolates. BMC Infect Dis, 2008. 8: p. 79.
5. Katsaragakis, S., et al., Acinetobacter baumannii infections in a surgical intensive care unit: predictors of multi-drug resistance. World J Surg, 2008. 32(6): p. 1194-202.
6. Cisneros, J.M. and J. Rodriguez-Bano, Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clin Microbiol Infect, 2002. 8(11): p. 687-93.
7. Tuon, F.F., et al., Mortality rate in patients with nosocomial Acinetobacter meningitis from a Brazilian hospital. Braz J Infect Dis, 2010. 14(5): p. 437-40.
8. Garcia-Quintanilla, M., et al., Emerging therapies for multidrug resistant Acinetobacter baumannii. Trends Microbiol, 2013. 21(3): p. 157-63.
9. Vila, J. and J. Pachon, Therapeutic options for Acinetobacter baumannii infections: an update. Expert Opin Pharmacother, 2012. 13(16): p. 2319-36.
10. Wisplinghoff, H., et al., Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin Infect Dis, 2000. 31(3): p. 690-7.
11. Perez, F., et al., Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother, 2007. 51(10): p. 3471-84.
12. Bals, R., Epithelial antimicrobial peptides in host defense against infection. Respir Res, 2000. 1(3): p. 141-50.
13. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50.
14. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7.
15. Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clin Microbiol Rev, 2006. 19(3): p. 491-511.
16. Wiesner, J. and A. Vilcinskas, Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 2010. 1(5): p. 440-64.
17. Martin, E., T. Ganz, and R.I. Lehrer, Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol, 1995. 58(2): p. 128-36.
18. Wang, Z. and G. Wang, APD: the Antimicrobial Peptide Database. Nucleic Acids Res, 2004. 32(Database issue): p. D590-2.
19. Yeaman, M.R. and N.Y. Yount, Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003. 55(1): p. 27-55.
20. Pingel, L.C., et al., Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Immunol Cell Biol, 2008. 86(8): p. 643-9.
21. Nguyen, L.T., E.F. Haney, and H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72.
22. Hancock, R.E. and G. Diamond, The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol, 2000. 8(9): p. 402-10.
23. Lai, Y. and R.L. Gallo, AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol, 2009. 30(3): p. 131-41.
24. Hancock, R.E. and M.G. Scott, The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A, 2000. 97(16): p. 8856-61.
25. Reed, W.A., et al., Enhanced in vitro growth of murine fibroblast cells and preimplantation embryos cultured in medium supplemented with an amphipathic peptide. Mol Reprod Dev, 1992. 31(2): p. 106-13.
26. Van Wetering, S., et al., Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol, 1997. 272(5 Pt 1): p. L888-96.
27. Andreu, D. and L. Rivas, Animal antimicrobial peptides: an overview. Biopolymers, 1998. 47(6): p. 415-33.
28. Gudmundsson, G.H. and B. Agerberth, Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods, 1999. 232(1-2): p. 45-54.
29. Zaiou, M., V. Nizet, and R.L. Gallo, Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol, 2003. 120(5): p. 810-6.
30. Durr, U.H., U.S. Sudheendra, and A. Ramamoorthy, LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta, 2006. 1758(9): p. 1408-25.
31. Chromek, M., I. Arvidsson, and D. Karpman, The antimicrobial peptide cathelicidin protects mice from Escherichia coli O157:H7-mediated disease. PLoS One, 2012. 7(10): p. e46476.
32. Chromek, M., et al., The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med, 2006. 12(6): p. 636-41.
33. Cirioni, O., et al., LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother, 2006. 50(5): p. 1672-9.
34. Jones, A., et al., Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. J Bacteriol, 2009. 191(12): p. 3861-8.
35. Bowdish, D.M., et al., Impact of LL-37 on anti-infective immunity. J Leukoc Biol, 2005. 77(4): p. 451-9.
36. Doss, M., et al., Human defensins and LL-37 in mucosal immunity. J Leukoc Biol, 2010. 87(1): p. 79-92.
37. Scott, A., et al., Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One, 2011. 6(10): p. e26525.
38. Devaud, M., F.H. Kayser, and B. Bachi, Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob Agents Chemother, 1982. 22(2): p. 323-9.
39. Goldstein, F.W., et al., Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid, 1983. 10(2): p. 138-47.
40. Segal, H., S. Garny, and B.G. Elisha, Is IS(ABA-1) customized for Acinetobacter? FEMS Microbiol Lett, 2005. 243(2): p. 425-9.
41. Ruiz, M., et al., Prevalence of IS(Aba1) in epidemiologically unrelated Acinetobacter baumannii clinical isolates. FEMS Microbiol Lett, 2007. 274(1): p. 63-6.
42. Segal, H., et al., Extended -10 promoter in ISAba-1 upstream of blaOXA-23 from Acinetobacter baumannii. Antimicrob Agents Chemother, 2007. 51(8): p. 3040-1.
43. Chen, T.L., et al., Acquisition of a plasmid-borne blaOXA-58 gene with an upstream IS1008 insertion conferring a high level of carbapenem resistance to Acinetobacter baumannii. Antimicrob Agents Chemother, 2008. 52(7): p. 2573-80.
44. Ravasi, P., et al., ISAba825, a functional insertion sequence modulating genomic plasticity and bla(OXA-58) expression in Acinetobacter baumannii. Antimicrob Agents Chemother, 2011. 55(2): p. 917-20.
45. Nikaido, H., Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews, 2003. 67(4): p. 593-656.
46. Vila, J., S. Marti, and J. Sanchez-Cespedes, Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother, 2007. 59(6): p. 1210-5.
47. Coyne, S., P. Courvalin, and B. Perichon, Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother, 2011. 55(3): p. 947-53.
48. Chang, H.L., et al., Nosocomial outbreak of infection with multidrug-resistant Acinetobacter baumannii in a medical center in Taiwan. Infect Control Hosp Epidemiol, 2009. 30(1): p. 34-8.
49. Siroy, A., et al., Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrob Agents Chemother, 2005. 49(12): p. 4876-83.
50. Mussi, M.A., A.S. Limansky, and A.M. Viale, Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrob Agents Chemother, 2005. 49(4): p. 1432-40.
51. del Mar Tomas, M., et al., Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother, 2005. 49(12): p. 5172-5.
52. Fernandez-Cuenca, F., Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2003. 51(3): p. 565-574.
53. Simonet, V., M. Mallea, and J.M. Pages, Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother, 2000. 44(2): p. 311-5.
54. Danelon, C., et al., Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. Biophys Chem, 2003. 104(3): p. 591-603.
55. Pages, J.M., C.E. James, and M. Winterhalter, The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol, 2008. 6(12): p. 893-903.
56. Masi, M. and J.M. Pages, Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J, 2013. 7: p. 22-33.
57. Nagano, N., et al., Nosocomial transmission of CTX-M-2 beta-lactamase-producing Acinetobacter baumannii in a neurosurgery ward. J Clin Microbiol, 2004. 42(9): p. 3978-84.
58. Celenza, G., et al., Spread of bla(CTX-M-type) and bla(PER-2) beta-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother, 2006. 57(5): p. 975-8.
59. Poirel, L., et al., Outbreak of Extended-Spectrum -Lactamase VEB-1-Producing Isolates of Acinetobacter baumannii in a French Hospital. Journal of Clinical Microbiology, 2003. 41(8): p. 3542-3547.
60. Yong, D., et al., High Prevalence of PER-1 Extended-Spectrum -Lactamase-Producing Acinetobacter spp. in Korea. Antimicrobial Agents and Chemotherapy, 2003. 47(5): p. 1749-1751.
61. Bowen, A.B. and C.R. Braden, Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis, 2006. 12(8): p. 1185-9.
62. Pasteran, F., et al., Emergence of PER-2 and VEB-1a in Acinetobacter baumannii Strains in the Americas. Antimicrob Agents Chemother, 2006. 50(9): p. 3222-4.
63. Limansky, A.S., M.A. Mussi, and A.M. Viale, Loss of a 29-Kilodalton Outer Membrane Protein in Acinetobacter baumannii Is Associated with Imipenem Resistance. Journal of Clinical Microbiology, 2002. 40(12): p. 4776-4778.
64. Cayo, R., et al., Analysis of genes encoding penicillin-binding proteins in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother, 2011. 55(12): p. 5907-13.
65. Nemec, A., et al., Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. J Med Microbiol, 2004. 53(Pt 12): p. 1233-40.
66. Turton, J.F., et al., Comparison of Acinetobacter baumannii isolates from the United Kingdom and the United States that were associated with repatriated casualties of the Iraq conflict. J Clin Microbiol, 2006. 44(7): p. 2630-4.
67. Vila, J., et al., Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother, 1995. 39(5): p. 1201-3.
68. Vila, J., et al., Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother, 1997. 39(6): p. 757-62.
69. Seward, R.J. and K.J. Towner, Molecular epidemiology of quinolone resistance in Acinetobacter spp. Clin Microbiol Infect, 1998. 4(5): p. 248-254.
70. Urban, C., et al., Polymyxin B-Resistant Acinetobacter baumannii Clinical Isolate Susceptible to Recombinant BPI21 and Cecropin P1. Antimicrobial Agents and Chemotherapy, 2001. 45(3): p. 994-995.
71. Li, J., et al., Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother, 2006. 50(9): p. 2946-50.
72. Piddock, L.J., Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev, 2006. 19(2): p. 382-402.
73. McIntosh, E.D., Efflux: how bacteria use pumps to control their microenvironment. Handb Exp Pharmacol, 2012(211): p. 153-66.
74. Rosenfeld, N., et al., Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother, 2012. 56(5): p. 2504-10.
75. Boujaafar, N., et al., Cell surface hydrophobicity of 88 clinical strains of Acinetobacter baumannii. Res Microbiol, 1990. 141(4): p. 477-82.
76. Yamamoto, S., N. Okujo, and Y. Sakakibara, Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch Microbiol, 1994. 162(4): p. 249-54.
77. Jacobs, A.C., et al., Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun, 2010. 78(5): p. 1952-62.
78. Russo, T.A., et al., Penicillin-binding protein 7/8 contributes to the survival of Acinetobacter baumannii in vitro and in vivo. J Infect Dis, 2009. 199(4): p. 513-21.
79. Aranda, J., et al., Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol, 2011. 193(15): p. 3740-7.
80. Russo, T.A., et al., The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect Immun, 2010. 78(9): p. 3993-4000.
81. Russo, T.A., et al., The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect Immun, 2013. 81(3): p. 915-22.
82. Brossard, K.A. and A.A. Campagnari, The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun, 2012. 80(1): p. 228-33.
83. Gohl, O., et al., The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol, 2006. 72(2): p. 1394-401.
84. de Breij, A., et al., CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606(T) to human airway epithelial cells and their inflammatory response. Res Microbiol, 2009. 160(3): p. 213-8.
85. Gaddy, J.A. and L.A. Actis, Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol, 2009. 4(3): p. 273-8.
86. Antunes, L.C., et al., Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS One, 2011. 6(8): p. e22674.
87. Choi, C.H., et al., Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol, 2005. 7(8): p. 1127-38.
88. Walzer, G., E. Rosenberg, and E.Z. Ron, The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ Microbiol, 2006. 8(6): p. 1026-32.
89. Choi, C.H., et al., Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol, 2008. 10(2): p. 309-19.
90. Lee, J.S., et al., Anti-tumor activity of Acinetobacter baumannii outer membrane protein A on dendritic cell-based immunotherapy against murine melanoma. J Microbiol, 2008. 46(2): p. 221-7.
91. Gaddy, J.A., A.P. Tomaras, and L.A. Actis, The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and immunity, 2009. 77(8): p. 3150-3160.
92. Jong Sook Jin1, S.-O.K., Dong Chan Moon1, Mamata Gurung1, Jung Hwa Lee1, Seung Il Kim2, Je and C. Lee1, Acinetobacter baumannii Secretes Cytotoxic Outer Membrane Protein A via Outer Membrane Vesicles. PLoS ONE, 2011.
93. Moffatt, J.H., et al., Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother, 2010. 54(12): p. 4971-7.
94. Beceiro, A., et al., Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother, 2011. 55(7): p. 3370-9.
95. Henry, R., et al., Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-beta-1,6-N-acetylglucosamine. Antimicrob Agents Chemother, 2012. 56(1): p. 59-69.
96. Ruzin, A., D. Keeney, and P.A. Bradford, AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother, 2007. 59(5): p. 1001-4.
97. Mendes, R.E., et al., Comprehensive assessment of tigecycline activity tested against a worldwide collection of Acinetobacter spp. (2005-2009). Diagn Microbiol Infect Dis, 2010. 68(3): p. 307-11.
98. Tsai, P.W., et al., Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One, 2011. 6(3): p. e17755.
99. Peeters, E., H.J. Nelis, and T. Coenye, Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods, 2008. 72(2): p. 157-65.
100. Mussi, M.A., et al., The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J Bacteriol, 2010. 192(24): p. 6336-45.
101. Loehfelm, T.W., N.R. Luke, and A.A. Campagnari, Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol, 2008. 190(3): p. 1036-44.
102. Cuenca, F.F., et al., Evaluation of SDS-polyacrylamide gel systems for the study of outer membrane protein profiles of clinical strains of Acinetobacter baumannii. J Basic Microbiol, 2003. 43(3): p. 194-201.
103. Tsai, P.W., et al., Characterizing the role of cell-wall beta-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37. PLoS One, 2011. 6(6): p. e21394.
104. Marolda, C.L., et al., Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol, 2006. 347: p. 237-52.
105. Krauel, K., et al., Platelet factor 4 binding to lipid A of Gram-negative bacteria exposes PF4/heparin-like epitopes. Blood, 2012. 120(16): p. 3345-52.
106. Graf, N. and J. Altenbuchner, Development of a method for markerless gene deletion in Pseudomonas putida. Appl Environ Microbiol, 2011. 77(15): p. 5549-52.
107. Aranda, J., et al., A rapid and simple method for constructing stable mutants of Acinetobacter baumannii. BMC Microbiol, 2010. 10: p. 279.
108. McConnell, M.J. and J. Pachon, Expression, purification, and refolding of biologically active Acinetobacter baumannii OmpA from Escherichia coli inclusion bodies. Protein Expr Purif, 2011. 77(1): p. 98-103.
109. McQueary, C.N., et al., Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility. J Microbiol, 2012. 50(3): p. 434-43.
110. Komeda, Y., T. Icho, and T. Iino, Effects of galU mutation on flagellar formation in Escherichia coli. J Bacteriol, 1977. 129(2): p. 908-15.
111. Rashid, M.H. and A. Kornberg, Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2000. 97(9): p. 4885-90.
112. Henrichsen, J., Twitching motility. Annu Rev Microbiol, 1983. 37: p. 81-93.
113. de la Fuente-Nunez, C., et al., Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother, 2012. 56(5): p. 2696-704.
114. Eijkelkamp, B.A., et al., Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol Lett, 2011. 323(1): p. 44-51.
115. De Smet, K. and R. Contreras, Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett, 2005. 27(18): p. 1337-47.
116. Sochacki, K.A., et al., Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci U S A, 2011. 108(16): p. E77-81.
117. Tsai, H. and L.A. Bobek, Human Salivary Histatins: Promising Anti-Fungal Therapeutic Agents. Critical Reviews in Oral Biology & Medicine, 1998. 9(4): p. 480-497.
118. Confer, A.W. and S. Ayalew, The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol, 2013. 163(3-4): p. 207-22.
119. Choi, C.H., et al., Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol, 2008. 8: p. 216.
120. Abe, T., et al., OmpA-like protein influences cell shape and adhesive activity of Tannerella forsythia. Mol Oral Microbiol, 2011. 26(6): p. 374-87.
121. Krishnan, S. and N.V. Prasadarao, Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections. FEBS J, 2012. 279(6): p. 919-31.
122. Namba, A., et al., OmpA is an adhesion factor of Aeromonas veronii, an optimistic pathogen that habituates in carp intestinal tract. J Appl Microbiol, 2008. 105(5): p. 1441-51.
123. Bryant, C.E., et al., The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol, 2010. 8(1): p. 8-14.
124. Chaby, R., Lipopolysaccharide-binding molecules: transporters, blockers and sensors. Cell Mol Life Sci, 2004. 61(14): p. 1697-713.
125. Raetz, C.R. and C. Whitfield, Lipopolysaccharide endotoxins. Annu Rev Biochem, 2002. 71: p. 635-700.
126. Beutler, B. and E.T. Rietschel, Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol, 2003. 3(2): p. 169-76.
127. Hornef, M.W., et al., Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med, 2003. 198(8): p. 1225-35.
128. Koga, T., et al., Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coli. Infect Immun, 1985. 47(3): p. 638-47.
129. Lin, L., et al., Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. MBio, 2012. 3(5).
130. Bowdish, D.M., et al., Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother, 2005. 49(5): p. 1727-32.
131. Rosenfeld, Y., N. Papo, and Y. Shai, Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem, 2006. 281(3): p. 1636-43.
132. Taylor, A.H., et al., Lipopolysaccharide (LPS) neutralizing peptides reveal a lipid A binding site of LPS binding protein. J Biol Chem, 1995. 270(30): p. 17934-8.
133. Ciornei, C.D., A. Egesten, and M. Bodelsson, Effects of human cathelicidin antimicrobial peptide LL-37 on lipopolysaccharide-induced nitric oxide release from rat aorta in vitro. Acta Anaesthesiol Scand, 2003. 47(2): p. 213-20.
134. Larrick, J.W., et al., Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun, 1995. 63(4): p. 1291-7.
135. Moffatt, J.H., et al., Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect Immun, 2013. 81(3): p. 684-9.
136. Turner, J., et al., Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother, 1998. 42(9): p. 2206-14.
137. Hood, M.I., et al., genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun, 2013. 81(2): p. 542-51.
138. Hell, E., et al., Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol, 2010. 50(2): p. 211-5.
139. Overhage, J., et al., Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun, 2008. 76(9): p. 4176-82.
140. Morgera, F., et al., Primate cathelicidin orthologues display different structures and membrane interactions. Biochem J, 2009. 417(3): p. 727-35.
141. Neville, F., et al., Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. Biophys J, 2006. 90(4): p. 1275-87.
142. Oren, Z., et al., Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J, 1999. 341 ( Pt 3): p. 501-13.
143. Porcelli, F., et al., NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry, 2008. 47(20): p. 5565-72.
144. Lin, Y.M., et al., Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. J Biol Chem, 2010. 285(12): p. 8985-94.
145. Smani, Y., M.J. McConnell, and J. Pachon, Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS One, 2012. 7(4): p. e33073.
146. Sugawara, E. and H. Nikaido, OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. J Bacteriol, 2012. 194(15): p. 4089-96.
147. Morona, R., M. Klose, and U. Henning, Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. J Bacteriol, 1984. 159(2): p. 570-8.
148. Park, J.S., et al., Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. FASEB J, 2012. 26(1): p. 219-28.
149. Smith, M.G., et al., New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev, 2007. 21(5): p. 601-14.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *