帳號:guest(18.191.200.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林郁民
作者(外文):Lin, Yu-Min
論文名稱(中文):建立鎘活化切絲蛋白的訊號途徑
論文名稱(外文):Establishment of signal transduction pathway for cadmium-induced cofilin activation
指導教授(中文):林立元
指導教授(外文):Lin, Lih-Yuan
口試委員(中文):楊嘉玲
李易展
口試委員(外文):Yang, Chia-ling
Lee, Yi-Jang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:100080556
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:57
中文關鍵詞:切絲蛋白肌動蛋白肌動蛋白單體肌動蛋白鏈肌動蛋白絲鈣離子載體踏車循環層狀偽足收縮環磷酸化聚合作用去聚合作用
外文關鍵詞:CofilinActinG-actinF-actinActin filamentCalcium ionophoreTreadmilling cycleLamellipodiaContractile ringsPhosphorylationPolymerizationDepolymerization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:84
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要

鎘為生物體非必需的元素,當被生物體過量攝取,則會對生物體造成嚴重的毒害。先前的研究指出鎘會影響細胞骨架的聚合作用。由於細胞骨架上肌動蛋白絲的聚合也受切絲蛋白的影響。本研究重點在於探討鎘對於人類胚胎腎臟細胞HEK293切絲蛋白活性的影響,及其參與的訊號傳遞系統。在我們的研究發現HEK293細胞處理鎘後切絲蛋白活性的上升以及PTEN蛋白表現量的下降。PTEN在細胞內主要功能為負調控PI3K訊號傳遞途徑。因此我們觀察鎘是否藉由PTEN/PI3K路徑進而影響切絲蛋白活性。我們對細胞施加PI3K的抑制劑LY294002,同樣會觀察到切絲蛋白的活性也因抑制了PI3K而受到阻斷。在細胞中表現PTEN則可降低切絲蛋白的活性。分析PTEN下游因子發現PI3K會透過下游Rho-GTPase以及PKD影響切絲蛋白活性。本研究將建立鎘對於切絲蛋白的訊號傳遞路徑。
英文摘要

Cadmium is a non-essential trace element for plant or animal life, excessive intake may cause severe poisoning to organisms. Previous studies indicated that cadmium affects the polymerization of the cytoskeleton. Because the polymerization of actin filaments is affected by cofilins activity. We focused in this study the effects of cadmium on cofilin activity and the involved signaling pathway in Hek293 cells. We found that cadmium treatment increased cofilin activity and decreased PTEN protein level in HEK293 cells. PTEN is a widely known negative regulator of PI3K pathway. Investigated whether cadmium regulates cofilin activity through PTEN/PI3K pathway. .Addition of PI3K inhibitor (LY294002) also blocked the cadmium-induced cofilin activation. We found that overexpression of PTEN decreased cofilin activity. PI3K and its downstream effectors, including Rho-GTPase and PKD also modulate cofilin activity. Our results established the signal transduction pathway for cadmium-induced cofilin activation.

目錄
中文摘要.........................................................................................3
英文摘要.........................................................................................4
縮寫表.............................................................................................5
中英對照表.....................................................................................6
緒論.................................................................................................7
材料與方法....................................................................................16
結果................................................................................................24
討論................................................................................................32
參考文獻........................................................................................38
附圖................................................................................................46
參考文獻

Aghajanian A, Wittchen ES, Campbell SL, Burridge K (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PloS one 4: e8045

Aizawa H, Sutoh K, Yahara I (1996) Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. The Journal of cell biology 132: 335-344

Allwood EG, Smertenko AP, Hussey PJ (2001) Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS letters 499: 97-100

Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y (2000) The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. European journal of immunology 30: 3422-3431

Ashworth S, Teng B, Kaufeld J, Miller E, Tossidou I, Englert C, Bollig F, Staggs L, Roberts IS, Park JK, Haller H, Schiffer M (2010) Cofilin-1 inactivation leads to proteinuria--studies in zebrafish, mice and humans. PloS one 5: e12626

Bamburg JR, Bray D (1987) Distribution and cellular localization of actin depolymerizing factor. The Journal of cell biology 105: 2817-2825

Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2013) Metals and breast cancer. Journal of mammary gland biology and neoplasia 18: 63-73

Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. The Journal of cell biology 136: 1307-1322

Chen J, Godt D, Gunsalus K, Kiss I, Goldberg M, Laski FA (2001) Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nature cell biology 3: 204-209

Condeelis JS, Wyckoff JB, Bailly M, Pestell R, Lawrence D, Backer J, Segall JE (2001) Lamellipodia in invasion. Seminars in cancer biology 11: 119-128

Dan C, Kelly A, Bernard O, Minden A (2001) Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. The Journal of biological chemistry 276: 32115-32121

Ding Y, Milosavljevic T, Alahari SK (2008) Nischarin inhibits LIM kinase to regulate cofilin phosphorylation and cell invasion. Molecular and cellular biology 28: 3742-3756

Doppler H, Bastea LI, Eiseler T, Storz P (2013) Neuregulin mediates F-actin-driven cell migration through inhibition of protein kinase D1 via Rac1 protein. The Journal of biological chemistry 288: 455-465

Fox DA, He L, Poblenz AT, Medrano CJ, Blocker YS, Srivastava D (1998) Lead-induced alterations in retinal cGMP phosphodiesterase trigger calcium overload, mitochondrial dysfunction and rod photoreceptor apoptosis. Toxicology letters 102-103: 359-361

Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. Journal of occupational medicine and toxicology 1: 22

Gohla A, Birkenfeld J, Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature cell biology 7: 21-29

Gunsalus KC, Bonaccorsi S, Williams E, Verni F, Gatti M, Goldberg ML (1995) Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. The Journal of cell biology 131: 1243-1259

Hartwig A (2010) Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 23: 951-960

Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Current opinion in cell biology 18: 26-31

Iida K, Yahara I (1999) Cooperation of two actin-binding proteins, cofilin and Aip1, in Saccharomyces cerevisiae. Genes to cells : devoted to molecular & cellular mechanisms 4: 21-32

Jarup L (2003) Hazards of heavy metal contamination. British medical bulletin 68: 167-182

Jiang CJ, Weeds AG, Hussey PJ (1997) The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. The Plant journal : for cell and molecular biology 12: 1035-1043

Jin L, Ying Z, Webb RC (2004) Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. American journal of physiology Heart and circulatory physiology 287: H1495-1500

Jovceva E, Larsen MR, Waterfield MD, Baum B, Timms JF (2007) Dynamic cofilin phosphorylation in the control of lamellipodial actin homeostasis. Journal of cell science 120: 1888-1897

Kim JS, Huang TY, Bokoch GM (2009) Reactive oxygen species regulate a slingshot-cofilin activation pathway. Molecular biology of the cell 20: 2650-2660

Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JC (2007) The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. The Journal of biological chemistry 282: 32520-32528

Kojima K, Kume H, Ito S, Oguma T, Shiraki A, Kondo M, Ito Y, Shimokata K (2007) Direct effects of hydrogen peroxide on airway smooth muscle tone: roles of Ca2+ influx and Rho-kinase. European journal of pharmacology 556: 151-156

Lee WK, Torchalski B, Thevenod F (2007) Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells. Am J Physiol Cell Physiol 293: C839-847

Leyman S, Sidani M, Ritsma L, Waterschoot D, Eddy R, Dewitte D, Debeir O, Decaestecker C, Vandekerckhove J, van Rheenen J, Ampe C, Condeelis J, Van Troys M (2009) Unbalancing the phosphatidylinositol-4,5-bisphosphate-cofilin interaction impairs cell steering. Molecular biology of the cell 20: 4509-4523

Liliental J, Moon SY, Lesche R, Mamillapalli R, Li D, Zheng Y, Sun H, Wu H (2000) Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Current biology : CB 10: 401-404

Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and applied pharmacology 238: 209-214

Maciver SK (1998) How ADF/cofilin depolymerizes actin filaments. Current opinion in cell biology 10: 140-144

Maciver SK, Weeds AG (1994) Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: consequences for cell locomotion. FEBS letters 347: 251-256

Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895-898

Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nature cell biology 2: 628-636

Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cellular signalling 25: 457-469

Moldovan L, Mythreye K, Goldschmidt-Clermont PJ, Satterwhite LL (2006) Reactive oxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase and Rac1. Cardiovascular research 71: 236-246

Moriyama K, Iida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes to cells : devoted to molecular & cellular mechanisms 1: 73-86

Nagata-Ohashi K, Ohta Y, Goto K, Chiba S, Mori R, Nishita M, Ohashi K, Kousaka K, Iwamatsu A, Niwa R, Uemura T, Mizuno K (2004) A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. The Journal of cell biology 165: 465-471

Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23: 769-782

Nishita M, Wang Y, Tomizawa C, Suzuki A, Niwa R, Uemura T, Mizuno K (2004) Phosphoinositide 3-kinase-mediated activation of cofilin phosphatase Slingshot and its role for insulin-induced membrane protrusion. The Journal of biological chemistry 279: 7193-7198

Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108: 233-246

Paavilainen VO, Bertling E, Falck S, Lappalainen P (2004) Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends in cell biology 14: 386-394

Park JD, Liu Y, Klaassen CD (2001) Protective effect of metallothionein against the toxicity of cadmium and other metals(1). Toxicology 163: 93-100

Paul AS, Pollard TD (2009) Review of the mechanism of processive actin filament elongation by formins. Cell motility and the cytoskeleton 66: 606-617

Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA, Hausser A (2009) Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Research 69: 5634-5638

Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453-465

Reisler E (1993) Actin molecular structure and function. Current opinion in cell biology 5: 41-47

San Martin A, Lee MY, Williams HC, Mizuno K, Lassegue B, Griendling KK (2008) Dual regulation of cofilin activity by LIM kinase and Slingshot-1L phosphatase controls platelet-derived growth factor-induced migration of human aortic smooth muscle cells. Circulation research 102: 432-438

Serezani CH, Kane S, Medeiros AI, Cornett AM, Kim SH, Marques MM, Lee SP, Lewis C, Bourdonnay E, Ballinger MN, White ES, Peters-Golden M (2012) PTEN directly activates the actin depolymerization factor cofilin-1 during PGE2-mediated inhibition of phagocytosis of fungi. Science signaling 5: ra12

Sidani M, Wessels D, Mouneimne G, Ghosh M, Goswami S, Sarmiento C, Wang W, Kuhl S, El-Sibai M, Backer JM, Eddy R, Soll D, Condeelis J (2007) Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. The Journal of cell biology 179: 777-791

Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. The EMBO journal 24: 473-486

Spratley SJ, Bastea LI, Doppler H, Mizuno K, Storz P (2011) Protein kinase D regulates cofilin activity through p21-activated kinase 4. The Journal of biological chemistry 286: 34254-34261

Sulciner DJ, Irani K, Yu ZX, Ferrans VJ, Goldschmidt-Clermont P, Finkel T (1996) rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation. Molecular and cellular biology 16: 7115-7121

Sundaresan M, Yu ZX, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, Goldschmidt-Clermont PJ, Finkel T (1996) Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. The Biochemical journal 318 ( Pt 2): 379-382

Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18: 149-175

Toshima J, Toshima JY, Amano T, Yang N, Narumiya S, Mizuno K (2001a) Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Molecular biology of the cell 12: 1131-1145

Toshima J, Toshima JY, Suzuki M, Noda T, Mizuno K (2001b) Cell-type-specific expression of a TESK1 promoter-linked lacZ gene in transgenic mice. Biochemical and biophysical research communications 286: 566-573

Toshima J, Toshima JY, Takeuchi K, Mori R, Mizuno K (2001c) Cofilin phosphorylation and actin reorganization activities of testicular protein kinase 2 and its predominant expression in testicular Sertoli cells. The Journal of biological chemistry 276: 31449-31458

Ushio-Fukai M (2009) Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxidants & redox signaling 11: 1289-1299

Wang W, Eddy R, Condeelis J (2007) The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7: 429-440

Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A, Goswami S, Bresnick AR, Condeelis JS (2006) The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. The Journal of cell biology 173: 395-404

Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. The Journal of biological chemistry 280: 12683-12689

Wang Z, Wang M, Carr BI (2010) Involvement of receptor tyrosine phosphatase DEP-1 mediated PI3K-cofilin signaling pathway in sorafenib-induced cytoskeletal rearrangement in hepatoma cells. J Cell Physiol 224: 559-565

Wegner A, Isenberg G (1983) 12-fold difference between the critical monomer concentrations of the two ends of actin filaments in physiological salt conditions. Proceedings of the National Academy of Sciences of the United States of America 80: 4922-4925

Xu B, Chen S, Luo Y, Chen Z, Liu L, Zhou H, Chen W, Shen T, Han X, Chen L, Huang S (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 6: e19052

Yap CT, Simpson TI, Pratt T, Price DJ, Maciver SK (2005) The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell motility and the cytoskeleton 60: 153-165

Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annual review of physiology 65: 761-789

Yonezawa N, Nishida E, Sakai H (1985) pH control of actin polymerization by cofilin. The Journal of biological chemistry 260: 14410-14412

Zhang LJ, Tao BB, Wang MJ, Jin HM, Zhu YC (2012) PI3K p110alpha isoform-dependent Rho GTPase Rac1 activation mediates H2S-promoted endothelial cell migration via actin cytoskeleton reorganization. PloS one 7: e44590

Zhao JW, Gao ZL, Ji QY, Wang H, Zhang HY, Yang YD, Xing FJ, Meng LJ, Wang Y (2012) Regulation of cofilin activity by CaMKII and calcineurin. Am J Med Sci 344: 462-472

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *