帳號:guest(3.142.173.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡志全
作者(外文):Chien, Chih-Chuan
論文名稱(中文):開發以微載體與微流體系統抓取、培養與觀察循環性癌細胞的簡易方法
論文名稱(外文):Development of a Simple Method for Capture, Propagation¸and Observation of Circulating Tumor Cells Using Microcarrier Beads and a Microfluidic Chip
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):徐琅
陳致真
口試委員(外文):Hsu, Long
Chen, Chih-chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:100080544
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:48
中文關鍵詞:循環性癌細胞微載體上皮細胞黏附分子微流道晶片聚乙二醇二丙烯酸酯
外文關鍵詞:Circulating tumor cellMicrocarrierEpithelial cell adhesion moleculeMicrofluidChipPEGDA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:572
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
早期偵測循環性癌細胞與它的細胞表面標誌可提供癌症診斷標靶治療重要的訊息。直到現在,抓取並偵測循環性癌細胞的方法既複雜又昂貴,而且抓取到的細胞無法直接培養放大數量。循環性癌細胞很稀少,在十億的血球細胞中才出現幾顆,因此需要一個方便又便宜的方法有效地抓取並培養循環性癌細胞。
此篇論文利用微載體Cytodex 1結合細胞過濾設備抓取並培養循環性癌細胞。過濾膜會先塗上一層polyHEMA,防止循環性癌細胞貼附,以得到較好的回收率。癌細胞貼附在微載體後,血球細胞被洗掉,加入培養液到細胞過濾設備以培養增殖循環型癌細胞。增殖後的癌細胞將可進行多重分析,像是免疫染色、冷光分析和聚合酶連鎖反應。為了容易觀察微載體抓到的循環性癌細胞,此研究也設計和製造微流道晶片,並利用PEGDA水膠在晶片裡建立微結構,以逐一地捕獲並排列微載體。藉由在過濾裝置裡簡單地混合Cytodex 1和HCT-8細胞株,研究顯示Cytodex 1可以有效地抓取並培養癌細胞。在細胞與微載體混合四小時之後,細胞抓取效率可達86%。此技術也可用於偵測癌細胞表面標誌如表皮細胞貼附分子、細胞角蛋白19和定出細胞數量。而微流道晶片中的微結構也成功地將微載體排列以利後續觀察或其他可能分析之使用。總結而言,本研究提供簡易的循環性癌細胞抓取、培養和分析,既經濟且方便,未來可望發展成癌症臨床診斷和預後的工具。
Early detection of circulating tumor cells (CTCs) and their cell surface marker analysis provide critical information for cancer diagnosis and target therapy. Until now, CTC capture and detection methods are complicated, costly and the captured cells could not be cultured and expanded directly. Because CTCs are rare, existing at only a few per one billion blood cells, a highly efficient method is required to capture and culture CTCs for further assay. This thesis used microcarrier beads Cytodex 1 combining a Cell Strainer device to capture and culture CTCs. The filter membrane in the Cell Strainer was first coated with poly 2-hydroxyethyl methacrylate to prevent CTC from binding to achieve better isolation efficiency. After cancer cells have bound to microcarrier beads and blood cells were removed, culture medium was added to the Cell Strainer device to expand the CTC. The feasibility of using the expanded cancer cells in multiple analyses, such as immunostaining, luciferase assay, and PCR were determined. Cyotdex 1 has been shown to effectively capture and culture HCT-8 cells by simply mixing them in the Cell Strainer device in a well. Cell capture efficiency with Cytodex beads can reach 86% after 4 h of cell seeding. This technique was followed by immunostaining the cancer cell marker epithelial cell adhesion molecule EpCAM, RT-PCR analysis the gene marker cytokeratin-19, as well as to quantify the cell number using an ATP-based luminescence assay. To simplify the observation of the captured CTC on the microcarrier beads, this study also designed and fabricated a microfluidic chip using polyethylene glycol diacrylate hydrogel to create microstructures. The chip could trap and arrange the microcarrier beads individually. The microstructure successfully arranged microcarrier beads in an array for easy observation and other potential uses. In summary, the method demonstrated in this thesis provides a useful tool for simple CTC capture, culture and analysis and have the advantages of economical and convenient, and may be applied in clinical diagnosis and prognosis in the near future.
中文摘要 Ⅰ
Abstract Ⅱ
Acknowledgement Ⅲ
Table of Contents Ⅴ
List of Figures Ⅷ
Abbreviations Ⅸ

Chapter 1 Introduction 1
Chapter 2 Materials and Methods 6
2.1 Cell culture 6
2.2 Microcarrier cell culture. 6
2.3 Preparation of polyHEMA-coated plate and membrane 6
2.4 Antibody conjugation on microcarrier beads 7
2.5 Capture efficiency determination 7
2.6 Cell viability determination 8
2.7 Immunofluorescence staining 9
2.8 Reverse transcription-PCR 9
2.9 Determination of cell number by ATP-regeneration luciferase assay 10
2.10 Circulating tumor cell captured from the blood samples of tumor bearing mice 11
2.11 Cell density determination by alamar blue assay 11
2.12 Spheroid formation 12
2.13 Fabrication of a PDMS microfluidic chip for microcarrier beads separation 12
2.14 Glass surface treatment with TMSPMA 13
2.15 Fabrication of PEG-DA hydrogel-based microstructure 13
2.16 Microcarrier beads trapping by the microstructures 14
Chapter 3 Results 15
3.1 Effects of polyHEMA coating on cell strainer membrane on cell
attachment 15
3.2 Microcarrier cell culture with microcarrier beads using polyHEMA coated plates 15
3.3 Cell capturing on antibody-conjugated microcarrier beads 15
3.4 Cell captured efficiency and cell viability with microcarrier beads 16
3.5 Immunofluorescence staining of cells on microcarrier beads 16
3.6 Detection of cancer marker CK19 with RT-PCR 17
3.7 Enumeration of the cell number using ATP-regeneration based luminescence assay 17
3.8 Capture circulating cancer cells from the blood of mice carrying tumor xenografts 18
3.9 Comparison of cell density in a fixed area 18
3.10 PEG microposts arranged microcarrier beads in the microfluidic chip 19
Chapter 4 Discussion 20
References 24
Tables 32
Figures 33
(1) Garcia, M.; Jemal, A.; Ward, E.; Center, M.; Hao, Y.; Siegel, R.; Thun, M.: Global cancer facts & figures 2007. Atlanta, GA: American Cancer Society 2007, 1.
(2) Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D.: Global cancer statistics. CA: a cancer journal for clinicians 2011, 61, 69-90.
(3) Fehm, T.; Sagalowsky, A.; Clifford, E.; Beitsch, P.; Saboorian, H.; Euhus, D.; Meng, S.; Morrison, L.; Tucker, T.; Lane, N.; Ghadimi, B. M.; Heselmeyer-Haddad, K.; Ried, T.; Rao, C.; Uhr, J.: Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res 2002, 8, 2073-84.
(4) Allard, W. J.; Matera, J.; Miller, M. C.; Repollet, M.; Connelly, M. C.; Rao, C.; Tibbe, A. G.; Uhr, J. W.; Terstappen, L. W.: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004, 10, 6897-904.
(5) Pantel, K.; Alix-Panabieres, C.; Riethdorf, S.: Cancer micrometastases. Nature reviews. Clinical oncology 2009, 6, 339-51.
(6) Yu, M.; Stott, S.; Toner, M.; Maheswaran, S.; Haber, D. A.: Circulating tumor cells: approaches to isolation and characterization. The Journal of cell biology 2011, 192, 373-82.
(7) Paterlini-Brechot, P.; Benali, N. L.: Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer letters 2007, 253, 180-204.
(8) Liberti, P. A.; Rao, C. G.; Terstappen, L. W.: Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. Journal of magnetism and magnetic materials 2001, 225, 301-307.
(9) Allard, W. J.; Matera, J.; Miller, M. C.; Repollet, M.; Connelly, M. C.; Rao, C.; Tibbe, A. G.; Uhr, J. W.; Terstappen, L. W.: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clinical Cancer Research 2004, 10, 6897-6904.
(10) Griwatz, C.; Brandt, B.; Assmann, G.; Zänker, K.: An immunological enrichment method for epithelial cells from peripheral blood. Journal of immunological methods 1995, 183, 251-265.
(11) Xu, W.; Cao, L.; Chen, L.; Li, J.; Zhang, X.-F.; Qian, H.-H.; Kang, X.-Y.; Zhang, Y.; Liao, J.; Shi, L.-H.: Isolation of circulating tumor cells in patients with hepatocellular carcinoma using a novel cell separation strategy. Clinical Cancer Research 2011, 17, 3783-3793.
(12) Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A.: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235-1239.
(13) Stott, S. L.; Hsu, C.-H.; Tsukrov, D. I.; Yu, M.; Miyamoto, D. T.; Waltman, B. A.; Rothenberg, S. M.; Shah, A. M.; Smas, M. E.; Korir, G. K.: Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences 2010, 107, 18392-18397.
(14) Stott, S. L.; Lee, R. J.; Nagrath, S.; Yu, M.; Miyamoto, D. T.; Ulkus, L.; Inserra, E. J.; Ulman, M.; Springer, S.; Nakamura, Z.: Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Science translational medicine 2010, 2, 25ra23.
(15) Yu, D.; Sun, X.; Qiu, Y.; Zhou, J.; Wu, Y.; Zhuang, L.; Chen, J.; Ding, Y.: Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma. Clinical Cancer Research 2007, 13, 3814-3824.
(16) Chen, X.; Lingala, S.; Khoobyari, S.; Nolta, J.; Zern, M. A.; Wu, J.: Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. Journal of hepatology 2011, 55, 838-845.
(17) Mitas, M.; Cole, D. J.; Hoover, L.; Fraig, M. M.; Mikhitarian, K.; Block, M. I.; Hoffman, B. J.; Hawes, R. H.; Gillanders, W. E.; Wallace, M. B.: Real-time reverse transcription-PCR detects KS1/4 mRNA in mediastinal lymph nodes from patients with non-small cell lung cancer. Clinical chemistry 2003, 49, 312-315.
(18) Ji, X.-Q.; Sato, H.; Tanaka, H.; Konishi, Y.; Fujimoto, T.; Takahashi, O.; Tanaka, T.: Real-time quantitative RT-PCR detection of disseminated endometrial tumor cells in peripheral blood and lymph nodes using the LightCycler System. Gynecologic oncology 2006, 100, 355-360.
(19) Schüler, F.; Dölken, G.: Detection and monitoring of minimal residual disease by quantitative real-time PCR. Clinica chimica acta 2006, 363, 147-156.
(20) Vona, G.; Sabile, A.; Louha, M.; Sitruk, V.; Romana, S.; Schütze, K.; Capron, F.; Franco, D.; Pazzagli, M.; Vekemans, M.: Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. The American journal of pathology 2000, 156, 57-63.
(21) Lim, L. S.; Hu, M.; Huang, M. C.; Cheong, W. C.; Gan, A. T. L.; Looi, X. L.; Leong, S. M.; Koay, E. S.-C.; Li, M.-H.: Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab on a Chip 2012, 12, 4388-4396.
(22) Kim, M. S.; Sim, T. S.; Kim, Y. J.; Kim, S. S.; Jeong, H.; Park, J.-M.; Moon, H.-S.; Kim, S. I.; Gurel, O.; Lee, S. S.: SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Lab on a Chip 2012, 12, 2874-2880.
(23) Gertler, R.; Rosenberg, R.; Fuehrer, K.; Dahm, M.; Nekarda, H.; Siewert, J. R.: Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. In Molecular Staging of Cancer; Springer, 2003; pp 149-155.
(24) Balic, M.; Dandachi, N.; Hofmann, G.; Samonigg, H.; Loibner, H.; Obwaller, A.; van der Kooi, A.; Tibbe, A. G.; Doyle, G. V.; Terstappen, L. W.: Comparison of two methods for enumerating circulating tumor cells in carcinoma patients. Cytometry Part B: Clinical Cytometry 2005, 68, 25-30.
(25) Christiansen, J. J.; Rajasekaran, A. K.: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer research 2006, 66, 8319-8326.
(26) Bonnomet, A.; Syne, L.; Brysse, A.; Feyereisen, E.; Thompson, E.; Noël, A.; Foidart, J.-M.; Birembaut, P.; Polette, M.; Gilles, C.: A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene 2011, 31, 3741-3753.
(27) Barrière, G.; Tartary, M.; Rigaud, M.: Epithelial mesenchymal transition: a new insight into the detection of circulating tumor cells. ISRN oncology 2012, 2012.
(28) Lecharpentier, A.; Vielh, P.; Perez-Moreno, P.; Planchard, D.; Soria, J.; Farace, F.: Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British journal of cancer 2011, 105, 1338-1341.
(29) Tatard, V.; Venier-Julienne, M.; Saulnier, P.; Prechter, E.; Benoit, J.; Menei, P.; Montero-Menei, C.: Pharmacologically active microcarriers: a tool for cell therapy. Biomaterials 2005, 26, 3727-3737.
(30) Lock, L. T.; Tzanakakis, E. S.: Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Engineering Part A 2009, 15, 2051-2063.
(31) Abranches, E.; Bekman, E.; Henrique, D.; Cabral, J.: Expansion of mouse embryonic stem cells on microcarriers. Biotechnology and bioengineering 2007, 96, 1211-1221.
(32) Böcher, M.; Böldicke, T.; Kieß, M.; Bilitewski, U.: Synthesis of mono-and bifunctional peptide–dextran conjugates for the immobilization of peptide antigens on ELISA plates: properties and application. Journal of immunological methods 1997, 208, 191-202.
(33) Wootton, R. C.; Demello, A. J.: Microfluidics: Analog-to-digital drug screening. Nature 2012, 483, 43-4.
(34) Neuži, P.; Giselbrecht, S.; Länge, K.; Huang, T. J.; Manz, A.: Revisiting lab-on-a-chip technology for drug discovery. Nature Reviews Drug Discovery 2012, 11, 620-632.
(35) Syvänen, A.-C.: Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Reviews Genetics 2001, 2, 930-942.
(36) Fu, A. Y.; Spence, C.; Scherer, A.; Arnold, F. H.; Quake, S. R.: A microfabricated fluorescence-activated cell sorter. Nature biotechnology 1999, 17, 1109-1111.
(37) Cho, S. H.; Chen, C. H.; Tsai, F. S.; Godin, J. M.; Lo, Y.-H.: Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab on a Chip 2010, 10, 1567-1573.
(38) Cao, Q.; Fan, A.; Klapperich, C.: Microfluidic chip fabrication and method to detect influenza. Journal of visualized experiments: JoVE 2012.
(39) Foudeh, A. M.; Didar, T. F.; Veres, T.; Tabrizian, M.: Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab on a Chip 2012, 12, 3249-3266.
(40) Ziółkowska, K.; Stelmachowska, A.; Kwapiszewski, R.; Chudy, M.; Dybko, A.; Brzózka, Z.: Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosensors and Bioelectronics 2012.
(41) Zheng, W.; Wang, Z.; Zhang, W.; Jiang, X.: A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells. Lab on a Chip 2010, 10, 2906-2910.
(42) Du, G.-S.; Pan, J.; Zhao, S.-P.; Zhu, Y.; den Toonder, J. M.; Fang, Q.: Cell-based Drug Combination Screening with a Microfluidic Droplet Array System. Analytical Chemistry 2013.
(43) Sochol, R.; Casavant, B.; Dueck, M.; Lee, L.; Lin, L.: A dynamic bead-based microarray for parallel DNA detection. Journal of Micromechanics and Microengineering 2011, 21, 054019.
(44) Verpoorte, E.: FocusBeads and chips: new recipes for analysis. Lab on a Chip 2003, 3, 60N-68N.
(45) Patterson, J.; Martino, M. M.; Hubbell, J. A.: Biomimetic materials in tissue engineering. Materials Today 2010, 13, 14-22.
(46) Hubbell, J. A.: Biomaterials in tissue engineering. Nature biotechnology 1995, 13, 565-576.
(47) Ifkovits, J. L.; Burdick, J. A.: Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue engineering 2007, 13, 2369-2385.
(48) Koh, W.-G.; Pishko, M. V.: Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Analytical and bioanalytical chemistry 2006, 385, 1389-1397.
(49) Du, Y.; Lo, E.; Ali, S.; Khademhosseini, A.: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proceedings of the National Academy of Sciences 2008, 105, 9522-9527.
(50) Folkman, J.; Moscona, A.: Role of cell shape in growth control. 1978.
(51) Fukazawa, H.; Mizuno, S.; Uehara, Y.: A microplate assay for quantitation of anchorage-independent growth of transformed cells. Analytical biochemistry 1995, 228, 83-90.
(52) Lee, H.-J.; Ho, M.-R.; Tseng, C.-S.; Hsu, C.-Y.; Huang, M.-S.; Peng, H.-L.; Chang, H.-Y.: Exponential ATP amplification through simultaneous regeneration from AMP and pyrophosphate for luminescence detection of bacteria. Analytical biochemistry 2011, 418, 19-23.
(53) Lin, R. Z.; Chang, H. Y.: Recent advances in three‐dimensional multicellular spheroid culture for biomedical research. Biotechnology journal 2008, 3, 1172-1184.
(54) Gumbiner, B. M.: Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996, 84, 345-357.
(55) Armstrong, A.; Eck, S. L.: EpCAM: a new therapeutic target for an old cancer antigen. Cancer biology & therapy 2003, 2, 320-326.
(56) Tiwari, A.; Punshon, G.; Kidane, A.; Hamilton, G.; Seifalian, A.: Magnetic beads (Dynabead™) toxicity to endothelial cells at high bead concentration: Implication for tissue engineering of vascular prosthesis. Cell biology and toxicology 2003, 19, 265-272.
(57) Mahmoudi, M.; Simchi, A.; Milani, A.; Stroeve, P.: Cell toxicity of superparamagnetic iron oxide nanoparticles. Journal of colloid and interface science 2009, 336, 510-518.
(58) Lindskog, U.; Lundgren, B.; Billig, D.; Lindner, E.: Alternatives for harvesting cells grown on microcarriers: effects on subsequent attachment and growth. Developments in biological standardization 1987, 66, 307.
(59) Garcia-Villa, A.; Balasubramanian, P.; Miller, B. L.; Lustberg, M. B.; Ramaswamy, B.; Chalmers, J. J.: Assessment of γ-H2AX levels in circulating tumor cells from patients receiving chemotherapy. Frontiers in oncology 2012, 2.
(60) Nunes, R. A.; Li, X.; Kang, S. P.; Burstein, H.; Roberts, L.; Carney, W.; Blackwell, K.; Ryan, P.; Borges, V.; Iglehart, J. D.; Friedman, P.; Harris, L. N.: Circulating tumor cells in HER-2 positive metastatic breast cancer patients treated with trastuzumab and chemotherapy. The International journal of biological markers 2009, 24, 1-10.
(61) Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L.: Stem cells, cancer, and cancer stem cells. Nature 2001, 414, 105-111.
(62) Klonisch, T.; Wiechec, E.; Hombach-Klonisch, S.; Ande, S. R.; Wesselborg, S.; Schulze-Osthoff, K.; Los, M. J.: Cancer stem cell markers in common cancers-therapeutic implications. Trends in molecular medicine 2008, 14, 450-460.
(63) Mani, S. A.; Guo, W.; Liao, M.-J.; Eaton, E. N.; Ayyanan, A.; Zhou, A. Y.; Brooks, M.; Reinhard, F.; Zhang, C. C.; Shipitsin, M.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704-715.
(64) SURGEON, I. G.: Cancer’s circulation problem. 2010.
(65) Chen, A. K.-L.; Chen, X.; Choo, A. B. H.; Reuveny, S.; Oh, S. K. W.: Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research 2011, 7, 97-111.
(66) Bechler, B.; Cogoli, A.; Cogoli‐Greuter, M.; Müller, O.; Hunzinger, E.; Criswell, S.: Activation of microcarrier‐attached lymphocytes in microgravity. Biotechnology and bioengineering 1992, 40, 991-996.
(67) Wu, W.; Kang, K.-T.; Lee, N. Y.: Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application. Analyst 2011, 136, 2287-2293.
(68) Lopez-Riquelme, N.; Minguela, A.; Villar-Permuy, F.; Ciprian, D.; Castillejo, A.; Alvarez-Lopez, M. R.; Soto, J. L.: Imaging cytometry for counting circulating tumor cells: comparative analysis of the CellSearch vs ImageStream systems. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 2013.
(69) J. Gustafson. “The CTC Microchip: A One-in-a-Billion Technology.” National Institute of Biomedical Imaging and Bioengineering. 2011. (Online article).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *