帳號:guest(18.226.98.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱宇凡
論文名稱(中文):分泌型Frizzled相關蛋白1和3對Wnt訊號傳導路徑調控癌細胞的幹細胞特性和腫瘤新生能力中所造成的影響
論文名稱(外文):The Effect of Secreted Frizzled-related Protein 1 and 3 on the Wnt Signaling in Modulating Stemness and Tumor-initiating Abilities of Cancer Cells
指導教授(中文):李佳霖
口試委員(中文):張佩靖
王慧菁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:100080541
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:49
中文關鍵詞:分泌型Frizzled相關蛋白Wnt訊號傳導路徑癌細胞的幹細胞特性腫瘤新生能力
相關次數:
  • 推薦推薦:0
  • 點閱點閱:250
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
根據我們的研究結果發現,sFRP蛋白主要是依靠位在N端的cysteine-rich domain (CRD) 與Wnt3a做結合,而C端netrin-related (NTR) domain則是能與β-catenin做結合。在Luciferase reporter assay所得到的實驗結果證實,大量表現sFRP1全長蛋白能將TopFlash的活性顯著地抑制到幾乎和基準值一樣低,而sFRP1 N端和sFRP1 C端的剪切型蛋白也能抑制TopFlash的活性。在sFRP3全長蛋白持續表現的細胞株中,其TCF/β-catenin轉錄活性是被增強的,然而sFRP3 N端和sFRP3 C端的剪切型蛋白卻是高度抑制TopFlash的活性的。另外,我們實驗結果發現持續表現sFRP1及sFRP3全長蛋白會拮抗Wnt3a活化LRP6 co-receptor,使其LRP6 co-receptor磷酸化水平降低。而我們也觀察到經由剪切後的sFRP蛋白也會調控Wnt3a活化LRP6 co-receptor,存在sFRP3 N端的剪切型蛋白會抑制LRP6 co-receptor磷酸化水平,而sFRP1 C端的剪切型蛋白能夠提升LRP6 co-receptor磷酸化水平。在LRP6訊號下游的glycogen synthase kinase-3β (GSK-3β) 活性亦會受到sFRP蛋白的調控,表現sFRP1全長蛋白會抑制GSK-3β磷酸化,反之表現sFRP3全長蛋白會促進GSK-3β磷酸化。我們也觀察到存在sFRP1的全長、N端、C端以及sFRP3全長和C端蛋白都會促進β-catenin的穩定性,使β-catenin能在細胞質累積並進入細胞核中。而Sphere-forming assay的結果顯示,sFRP1全長蛋白會抑制sphere的形成,相反地,sFRP3全長蛋白則是會促進sphere-forming的能力。綜合以上的實驗結果得知,sFRP蛋白能夠影響Wnt訊息傳導路徑的活化,而這樣的影響是經由不同的機轉來調控Wnt訊息傳導路徑的活性。我們在此提供了一些嶄新的方法來檢視其生物學上的影響和作用方式,並且了解sFRP1和sFRP3在調控Wnt訊息傳導路徑中所扮演的角色以及對於癌細胞的幹細胞特性和腫瘤新生能力的影響。
Based on the results of our study, sFRP proteins have an association with Wnt3a through cysteine-rich domain (CRD) which is located at the N terminus; while the C terminus [netrin-related (NTR) domain] associates with β-catenin. The result derived from Luciferase reporter assay proves that overexpression full-length sFRP1 can apparently inhibit the level of TopFlash reporter activities to be almost as low as the basal level. In addition, the deletion mutants, the N and C terminus of sFRP1, also inhibit activities of TopFlash reporter. In the sFRP3-overexpressed stable clone, the transcriptional activity of TCF/β-catenin is enhanced, whereas the deletion mutants, the N and C terminus of sFRP3, highly inhibit activities of TopFlash reporter. Furthermore, our data showed that sFRP1 and sFRP3 antagonize Wnt3a-elicited LRP6 co-receptor activation, which also leads to the fall in its phosphorylation level. Interestingly, we observed that the deletion mutants of sFRPs would modulate Wnt3a-elicited LRP6 co-receptor activation. The N terminus of sFRP3 inhibits the phosphorylation level of LRP6 co-receptor, whereas overexpression the C terminus of sFRP1 enhances the phosphorylation level of LRP6 co-receptor. The activity of glycogen synthase kinase-3β (GSK-3β) which is in the downstream of LRP6 is also modulated by sFRP proteins. Moreover, it showed that overexpression sFRP1 could inhibit GSK-3β phosphorylation, whereas overexpression sFRP3 enhances the phosphorylation level of GSK-3β. Also, we observed that the full length, N, and C terminus of sFRP1 and the full length and C terminus of sFRP3 would stabilize β-catenin, which contributes to β-catenin accumulation in the cytosol and further entering into the cell nucleus. As the result showed in the sphere-forming assay, full-length sFRP1 would inhibit the formation of sphere. On the contrary, full-length sFRP3 facilitates the capability of sphere-forming. From what has been mentioned above, we can come to the conclusion that sFRP proteins are capable of modulating the Wnt signaling pathway. They control the activity of Wnt signaling pathway through different mechanisms. In this study, we provide several brand-new approaches to survey the biological effects of sFRPs. Furthermore, these findings characterize the roles of sFRP1 and sFRP3 involved in regulating Wnt activities and provide a new perspective regarding their biological effects and mode of action, distinguished by capable of modulating stemness and tumor-initiating abilities.
背景介紹 (Introduction)
材料與方法 (Materials and methods)
實驗結果 (Results)
討論 (Discussion)
圖表及圖說 (Figures and figure legends)
附件(Appendixes)
文獻參考 (References)

Arrazola MS, Varela-Nallar L, Colombres M, Toledo EM, Cruzat F, Pavez L, Assar R, Aravena A, Gonzalez M, Montecino M, Maass A, Martinez S, Inestrosa NC (2009) Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. Journal of cellular physiology 221: 658-667

Bengochea A, de Souza MM, Lefrancois L, Le Roux E, Galy O, Chemin I, Kim M, Wands JR, Trepo C, Hainaut P, Scoazec JY, Vitvitski L, Merle P (2008) Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. British journal of cancer 99: 143-150

Bordonaro M (2009) Role of Wnt signaling in the development of type 2 diabetes. Vitamins and hormones 80: 563-581

Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. Journal of cell science 121: 737-746

Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P, Chughtai S, Wallis Y, Matthews GM, Morton DG (2004) The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer research 64: 883-888

Caraglia (2010) WNT pathway in oral cancer: Epigenetic inactivation of WNT-inhibitors. Oncology Reports

Cheng YY, Yu J, Wong YP, Man EP, To KF, Jin VX, Li J, Tao Q, Sung JJ, Chan FK, Leung WK (2007) Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer. British journal of cancer 97: 895-901

Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, Yu MH, Liu HS, Chu DW, Lin YW (2009) SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecologic oncology 112: 646-653

Cruciat CM, Niehrs C (2013) Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harbor perspectives in biology 5: a015081

De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta biochimica et biophysica Sinica 43: 745-756

Esteve P, Bovolenta P (2010) The Advantages and Disadvantages of Sfrp1 and Sfrp2 Expression in Pathological Events. The Tohoku Journal of Experimental Medicine 221: 11-17

Finch PW, He X, Kelley MJ, Uren A, Schaudies RP, Popescu NC, Rudikoff S, Aaronson SA, Varmus HE, Rubin JS (1997) Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proceedings of the National Academy of Sciences of the United States of America 94: 6770-6775

He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281: 1509-1512

He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131: 1663-1677

Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405: 76-81

Hirata H, Hinoda Y, Ueno K, Majid S, Saini S, Dahiya R (2010) Role of secreted frizzled-related protein 3 in human renal cell carcinoma. Cancer research 70: 1896-1905

Hou HA, Kuo YY, Liu CY, Lee MC, Tang JL, Chen CY, Chou WC, Huang CF, Lee FY, Liu MC, Yao M, Tien HF (2011) Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia. British journal of cancer 105: 1927-1933

Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398: 431-436

Jost E, Schmid J, Wilop S, Schubert C, Suzuki H, Herman JG, Osieka R, Galm O (2008) Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia. British journal of haematology 142: 745-753

Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66: 131-144

Kongkham PN, Northcott PA, Croul SE, Smith CA, Taylor MD, Rutka JT (2010) The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene 29: 3017-3024

Ladher RK, Church VL, Allen S, Robson L, Abdelfattah A, Brown NA, Hattersley G, Rosen V, Luyten FP, Dale L, Francis-West PH (2000) Cloning and expression of the Wnt antagonists Sfrp-2 and Frzb during chick development. Developmental biology 218: 183-198

Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88: 747-756

Lin K, Wang S, Julius MA, Kitajewski J, Moos M, Jr., Luyten FP (1997) The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America 94: 11196-11200

Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology 20: 781-810

Lopez-Rios J, Esteve P, Ruiz JM, Bovolenta P (2008) The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural development 3: 19

Luna-Ulloa LB, Hernandez-Maqueda JG, Castaneda-Patlan MC, Robles-Flores M (2011a) Protein kinase C in Wnt signaling: Implications in cancer initiation and progression. IUBMB life 63: 915-921

Luna-Ulloa LB, Hernandez-Maqueda JG, Santoyo-Ramos P, Castaneda-Patlan MC, Robles-Flores M (2011b) Protein kinase C zeta is a positive modulator of canonical Wnt signaling pathway in tumoral colon cell lines. Carcinogenesis 32: 1615-1624

MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental cell 17: 9-26

Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, Biechele T, Petryshen TL, Moon RT, Haggarty SJ, Tsai LH (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136: 1017-1031

Martin-Manso G, Calzada MJ, Chuman Y, Sipes JM, Xavier CP, Wolf V, Kuznetsova SA, Rubin JS, Roberts DD (2011) sFRP-1 binds via its netrin-related motif to the N-module of thrombospondin-1 and blocks thrombospondin-1 stimulation of MDA-MB-231 breast carcinoma cell adhesion and migration. Archives of biochemistry and biophysics 509: 147-156

Moos M (1996) Primary Structure and Tissue Distribution of FRZB, a Novel Protein Related to Drosophila Frizzled, Suggest a Role in Skeletal Morphogenesis. Journal of Biological Chemistry 271: 26131-26137

Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S, Sasaki Y, Mita H, Nishikawa N, Yamaguchi K, Hirata K, Itoh F, Tokino T, Mori M, Imai K, Shinomura Y (2007) Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 26: 4699-4713

O'Hurley G, Perry AS, O'Grady A, Loftus B, Smyth P, O'Leary JJ, Sheils O, Fitzpatrick JM, Hewitt SM, Lawler M, Kay EW (2011) The role of secreted frizzled-related protein 2 expression in prostate cancer. Histopathology 59: 1240-1248

Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707-710

Prange W, Breuhahn K, Fischer F, Zilkens C, Pietsch T, Petmecky K, Eilers R, Dienes HP, Schirmacher P (2003) Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. The Journal of pathology 201: 250-259

Prasad CP, Gupta SD, Rath G, Ralhan R (2007) Wnt signaling pathway in invasive ductal carcinoma of the breast: relationship between beta-catenin, dishevelled and cyclin D1 expression. Oncology 73: 112-117

Rehn M, Pihlajaniemi T, Hofmann K, Bucher P (1998) The frizzled motif: in how many different protein families does it occur? Trends in biochemical sciences 23: 415-417

Salic AN, Kroll KL, Evans LM, Kirschner MW (1997) Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124: 4739-4748

Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Current biology : CB 11: 951-961

Sogabe Y, Suzuki H, Toyota M, Ogi K, Imai T, Nojima M, Sasaki Y, Hiratsuka H, Tokino T (2008) Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. International journal of oncology 32: 1253-1261

Sonderegger S, Haslinger P, Sabri A, Leisser C, Otten JV, Fiala C, Knofler M (2010) Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology 151: 211-220

Song DH, Sussman DJ, Seldin DC (2000) Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. The Journal of biological chemistry 275: 23790-23797

Su HY, Lai HC, Lin YW, Liu CY, Chen CK, Chou YC, Lin SP, Lin WC, Lee HY, Yu MH (2010) Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. International journal of cancer Journal international du cancer 127: 555-567

Suzuki A, Ozono K, Kubota T, Kondou H, Tachikawa K, Michigami T (2008a) PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3beta in osteoblastic Saos-2 cells. Journal of cellular biochemistry 104: 304-317

Suzuki H, Toyota M, Carraway H, Gabrielson E, Ohmura T, Fujikane T, Nishikawa N, Sogabe Y, Nojima M, Sonoda T, Mori M, Hirata K, Imai K, Shinomura Y, Baylin SB, Tokino T (2008b) Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. British journal of cancer 98: 1147-1156

Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van Engeland M, Toyota M, Tokino T, Hinoda Y, Imai K, Herman JG, Baylin SB (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature genetics 36: 417-422

Takagi H, Sasaki S, Suzuki H, Toyota M, Maruyama R, Nojima M, Yamamoto H, Omata M, Tokino T, Imai K, Shinomura Y (2008) Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. Journal of gastroenterology 43: 378-389

Uren A, Reichsman F, Anest V, Taylor WG, Muraiso K, Bottaro DP, Cumberledge S, Rubin JS (2000) Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. The Journal of biological chemistry 275: 4374-4382

Vlad-Fiegen A, Langerak A, Eberth S, Muller O (2012) The Wnt pathway destabilizes adherens junctions and promotes cell migration via beta-catenin and its target gene cyclin D1. FEBS open bio 2: 26-31

Wang S, Krinks M, Lin K, Luyten FP, Moos M, Jr. (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88: 757-766

Wolf AM, Lyuksyutova AI, Fenstermaker AG, Shafer B, Lo CG, Zou Y (2008) Phosphatidylinositol-3-kinase-atypical protein kinase C signaling is required for Wnt attraction and anterior-posterior axon guidance. The Journal of neuroscience : the official journal of the Society for Neuroscience 28: 3456-3467

Wu B, Crampton SP, Hughes CC (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26: 227-239

Yamamura S, Kawakami K, Hirata H, Ueno K, Saini S, Majid S, Dahiya R (2010) Oncogenic functions of secreted Frizzled-related protein 2 in human renal cancer. Molecular cancer therapeutics 9: 1680-1687

Zhang J, Gill AJ, Issacs JD, Atmore B, Johns A, Delbridge LW, Lai R, McMullen TP (2012) The Wnt/beta-catenin pathway drives increased cyclin D1 levels in lymph node metastasis in papillary thyroid cancer. Human pathology 43: 1044-1050

Zhong X, Desilva T, Lin L, Bodine P, Bhat RA, Presman E, Pocas J, Stahl M, Kriz R (2007) Regulation of secreted Frizzled-related protein-1 by heparin. The Journal of biological chemistry 282: 20523-20533
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 抑制Rho激酶-肌球蛋白II路徑對於誘導人類胚胎幹細胞衍生間葉前驅細胞產生神經型態之探討
2. sFRP4 (secreted Frizzled-related protein 4) 在Wnt訊息傳遞誘發轉型為癌症幹細胞過程所扮演的角色
3. 異常細胞核內表現的SFRPs在Wnt/β-catenin誘發增加癌症幹細胞特性所扮演的角色
4. 人類骨髓間質幹細胞在癌症幹細胞之利基中所扮演的角色
5. 鑑別在上皮-間質轉化期間 β-catenin 之相異目標並藉此定義癌幹細胞族群與預測腫瘤復發可能性
6. 癌症幹細胞表面標記在癌幹特性、腫瘤形成與轉移所扮演的角色
7. 結合高度正相關GRB2 和 14-3-3θ新癌幹細胞標記提供較準確的大腸癌預後情形
8. 藉由間質幹細胞分泌的外泌體所轉移至癌細胞的RNAs/蛋白質能夠調控其癌症幹細胞的特性
9. CRISPR/Cas9藉由基因體和表觀基因組的編輯精準地調節癌症幹細胞相關基因表達
10. 骨髓間質幹細胞有助於異質性癌症幹細胞利基形成並促進癌症轉移
11. 14-3-3θ通過Stat3途徑逆轉上皮-間質轉化, 以允許腫瘤在轉移部位的生長和定殖
12. 飢餓環境下誘導的M-Sec透過促進奈米隧道管形成以增加癌症幹細胞之特性
13. 間質幹細胞透過細胞間通道促進肺癌細胞產生癌症幹細胞的表型
14. 探討分泌性捲曲蛋白與肺癌幹細胞特性的關聯性
15. 探討STAT3不同轉錄後修飾對於肺癌癌幹細胞特性的調控
 
* *