帳號:guest(3.143.204.127)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃韻儒
論文名稱(中文):移除A型流感病毒血凝素軀幹部N-linked醣基以誘發異型中和性抗體與交叉保護免疫性之研究
論文名稱(外文):Removal of N-linked glycan(s) in the stem region of influenza A virus hemagglutinin proteins to elicit heterosubtypic neutralizing antibodies and cross-protective immunity
指導教授(中文):吳夙欽
口試委員(中文):張定國
林思偕
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:100080525
出版年(民國):102
畢業學年度:101
語文別:英文中文
論文頁數:53
中文關鍵詞:禽流感血凝素軀幹部N-linked 醣基中和性抗體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:387
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
高病原性禽流感可造成大量禽類死亡及在人類中造成高死亡率,而2009年爆發之流行性感冒更造成人類嚴重的威脅。由於血凝素(hemagglutinin, HA)在流感病毒演化過程中的高度變異性,對於發展可以對抗多種類流感病毒的廣效型疫苗而言仍是一大挑戰。相較於高變異性的HA球狀區域(globular head),位於軀幹部(stem region)的N-linked 醣基在不同A型流感分離株中具有較佳的保留性。此篇研究針對禽流感H5N1 (A/Thailand/ KAN-1/2004) 和2009年爆發之流行性感冒pH1N1(A/Texas/05/2009)的HA軀幹部進行高保留性N-linked醣基預測與移除,並利用桿狀病毒表現系統(baculovirus expression system)製備軀幹去醣基化(stem-deglycosylated)的重組血凝素蛋白─H5 N19, 20, 34A、H5 N484A、H1 N32, 33, 45A和H1 N503A。在老鼠接種軀幹去醣基化免疫原後,進一步分析血清中的IgG、中和性抗體以及軀幹部專一性抗體反應。本篇研究證實,藉由高保留性N-linked醣基的移除可以誘發中和性抗體以對抗同源性的A型流感病毒。尤其是移除pH1N1 HA第503個胺基酸上的N-linked醣基,推判在免疫老鼠對抗異源性H5N1病毒的交叉保護與中和性免疫反應有重要影響。此研究成果可以作為未來發展廣效型疫苗的參考。
Due to rapid variation of hemagglutinin (HA), the major virion surface glycoprotein of influenza A virus, it remains challenge to develop broader and more effective universal vaccines. Compared to the highly variable HA globular head, N-linked glycan on the stem region is more conserved among different strains and most subtypes. In this study, we predicted and removed the conserved N-linked glycans in the H5N1 (A/Thailand/ KAN-1/2004) and pH1N1(A/Texas/05/2009) stem region. The stem-deglycosylated H5 N19, 20, 34A, H5 N484A, H1 N32, 33, 45A, and H1 N503A recombinant HA proteins (rHAs) were purified by baculovirus expression system. Further, after vaccination, we analyzed anti-HA total IgG and neutralizing antibodies (nAbs) titer against different subtypes of influenza viruses, and the stem-specific antibody responses were also identified. We successfully produced stem-deglycosylated rH5HAs and rH1HAs that could induce neutralizing antibodies against homologous serotype of influenza A virus. In addition, the removal of N-linked glycan on pH1N1 stem region 503 residue may be important to elicit neutralizing antibodies and cross-reactive protection against heterosubtypic H5N1, suggesting that H1 N503A protein might be used as a cross-reactive vaccine candidate.
中文摘要 I
Abstract II
致謝 III
Content IV
1. Introduction 1
1.1 Overview of influenza A virus 1
1.2 Hemmaglutinin of influenza A virus 4
1.2.1 Structure of HA 4
1.2.1.1 Globular head of HA 5
1.2.1.2 Stem region of HA 6
1.2.2 Glycosylation of HA 6
1.2.2.1 Glycosylation on HA globular head 7
1.2.2.2 Glycosylation on HA stem region 8
1.3 Influenza A vaccine development based on HA 8
1.4 Study goals 11
2. Materials and methods 13
2.1 Cell lines 13
2.2 Construction of recombinant HA proteins 13
2.2.1 Construction design 13
2.2.2 Plasmid preparation 14
2.3 Bac-to-Bac baculovirus expression system 14
2.3.1 Generating the recombinant bacmid 14
2.3.2 Recombinant bacmid clones amplification 15
2.3.3 Transfection by Turbofect 15
2.4 Production and purification of recombinant HA proteins 16
2.4.1 Production of recombinant HA proteins 16
2.4.2 Purification of recombinant HA proteins 16
2.5 HA proteins characterization 17
2.5.1 Western blotting 17
2.5.2 Protein transfer and immuno-hybridization 17
2.5.3 Coomassie blue staining 18
2.5.4 HA glycosylation pattern test by peptide-N-glycosidase F (PNGaseF) treatment 18
2.6 Mouse immunization 18
2.7 Enzyme-linked immunosorbent assay (ELISA) 19
2.8 H5N1 pseudotyped particle (H5N1pp) neutralization assays 19
2.9 Plague assay 20
2.10 Plague reduction neutralization test (PRNT) 20
2.11 Absorption assay 21
2.13 Statistic analysis 21
3. Results 22
3.1 N-linked glycosylation sites located in the stem region of H5N1 and pH1N1 HA proteins 22
3.2 Bindings of stem-deglycosylated rH5HA and rH1HA to stem-specific mAbs C179, CR6261, and FI6v3 23
3.3 HA-specific IgG titers elicited by stem-deglycosylated rH5HA and rH1HA immunization 24
3.4 Neutralizing antibody titers elicited by stem-deglycosylated rH5HA and rH1HA immunization 25
3.5 Stem-specific antibodies elicited by stem-deglycosylated rH5HA and rH1HA immunization 27
4. Discussion 28
5. References 34
6. Figures 41
Fig. 1 Sequence alignment and N-linked glycans prediction by NetNGlyc Server 41
Fig.2 3D structure model of influenza HA containing potential N-linked glycans on stem region 42
Fig. 3 Characterization of recombinant influenza HA glycoproteins 43
Fig. 4 Specific antibody binding analysis for WT and stem-deglycosylated HA proteins 44
Fig. 5 Total IgG titers elicited by stem-deglycosylated H5HAs and H1HAs 45
Fig. 6 Neutralizing antibodies elicited by stem-deglycosylated H5HAs against H5N1 (KAN-1) pseudotyped virus particle and H1N1 (A/California/04/2009) virus 46
Fig. 7 Neutralizing antibodies elicited by stem-deglycosylated H1HA proteins against H1N1 (A/California/04/2009) virus and H5N1 (KAN-1) pseudotyped virus particle 47
Fig. 8 Mapping the stem-specific antibodies elicited by stem-deglycosylated rH5HAs and rH1HAs 48
7. Supplements 49
Fig.S1 Characterization of stem-deglycosylated rH5HA and rH1HA proteins 49
Fig.S2 Characterization of Δstem-H5HA andΔstem-H1HA 50
Fig.S3 TNF-α production of DCs by stem-deglycosylated rH5HA or rH1HA treatment 51
Fig.S4 IL-12 p40 activity of DCs by stem-deglycosylated rH5HA or rH1HA stimulus 52
Fig.S5 CD40, CD86, and IAb surface markers on DCs analysis due to stem-deglycosylated rH5HA or rH1HA stimulus 53
Abe, Y., Takashita, E., Sugawara, K., Matsuzaki, Y., Muraki, Y., Hongo, S., 2004. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. Journal of virology 78, 9605-9611.
Bastien, N., Antonishyn, N.A., Brandt, K., Wong, C.E., Chokani, K., Vegh, N., Horsman, G.B., Tyler, S., Graham, M.R., Plummer, F.A., Levett, P.N., Li, Y., 2010. Human infection with a triple-reassortant swine influenza A(H1N1) virus containing the hemagglutinin and neuraminidase genes of seasonal influenza virus. The Journal of infectious diseases 201, 1178-1182.
Bommakanti, G., Citron, M.P., Hepler, R.W., Callahan, C., Heidecker, G.J., Najar, T.A., Lu, X., Joyce, J.G., Shiver, J.W., Casimiro, D.R., ter Meulen, J., Liang, X., Varadarajan, R., 2010. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proceedings of the National Academy of Sciences of the United States of America 107, 13701-13706.
Bommakanti, G., Lu, X., Citron, M.P., Najar, T.A., Heidecker, G.J., ter Meulen, J., Varadarajan, R., Liang, X., 2012. Design of Escherichia coli-expressed stalk domain immunogens of H1N1 hemagglutinin that protect mice from lethal challenge. Journal of virology 86, 13434-13444.
Claas, E.C., Osterhaus, A.D., van Beek, R., De Jong, J.C., Rimmelzwaan, G.F., Senne, D.A., Krauss, S., Shortridge, K.F., Webster, R.G., 1998. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472-477.
Cornelissen, L.A., de Vries, R.P., de Boer-Luijtze, E.A., Rigter, A., Rottier, P.J., de Haan, C.A., 2010. A single immunization with soluble recombinant trimeric hemagglutinin protects chickens against highly pathogenic avian influenza virus H5N1. PloS one 5, e10645.
Corti, D., Voss, J., Gamblin, S.J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S.G., Pinna, D., Minola, A., Vanzetta, F., Silacci, C., Fernandez-Rodriguez, B.M., Agatic, G., Bianchi, S., Giacchetto-Sasselli, I., Calder, L., Sallusto, F., Collins, P., Haire, L.F., Temperton, N., Langedijk, J.P., Skehel, J.J., Lanzavecchia, A., 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850-856.
Daniels, R., Kurowski, B., Johnson, A.E., Hebert, D.N., 2003. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Molecular cell 11, 79-90.
de Vries, R.P., Smit, C.H., de Bruin, E., Rigter, A., de Vries, E., Cornelissen, L.A., Eggink, D., Chung, N.P., Moore, J.P., Sanders, R.W., Hokke, C.H., Koopmans, M., Rottier, P.J., de Haan, C.A., 2012. Glycan-dependent immunogenicity of recombinant soluble trimeric hemagglutinin. Journal of virology 86, 11735-11744.
Dormitzer, P.R., Tsai, T.F., Del Giudice, G., 2012. New technologies for influenza vaccines. Human vaccines & immunotherapeutics 8, 45-58.
Dreyfus, C., Ekiert, D.C., Wilson, I.A., 2013. Structure of a classical broadly neutralizing stem antibody in complex with a pandemic h2 influenza virus hemagglutinin. Journal of virology 87, 7149-7154.
Du, L., Jin, L., Zhao, G., Sun, S., Li, J., Yu, H., Li, Y., Zheng, B.J., Liddington, R.C., Zhou, Y., Jiang, S., 2013. Identification and structural characterization of a broadly neutralizing antibody targeting a novel conserved epitope on the influenza virus H5N1 hemagglutinin. Journal of virology 87, 2215-2225.
Du, L., Zhou, Y., Jiang, S., 2010. Research and development of universal influenza vaccines. Microbes and infection / Institut Pasteur 12, 280-286.
Ekiert, D.C., Bhabha, G., Elsliger, M.A., Friesen, R.H., Jongeneelen, M., Throsby, M., Goudsmit, J., Wilson, I.A., 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246-251.
Ekiert, D.C., Wilson, I.A., 2012. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Current opinion in virology 2, 134-141.
Gamblin, S.J., Skehel, J.J., 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285, 28403-28409.
Garten, R.J., Davis, C.T., Russell, C.A., Shu, B., Lindstrom, S., Balish, A., Sessions, W.M., Xu, X., Skepner, E., Deyde, V., Okomo-Adhiambo, M., Gubareva, L., Barnes, J., Smith, C.B., Emery, S.L., Hillman, M.J., Rivailler, P., Smagala, J., de Graaf, M., Burke, D.F., Fouchier, R.A., Pappas, C., Alpuche-Aranda, C.M., Lopez-Gatell, H., Olivera, H., Lopez, I., Myers, C.A., Faix, D., Blair, P.J., Yu, C., Keene, K.M., Dotson, P.D., Jr., Boxrud, D., Sambol, A.R., Abid, S.H., St George, K., Bannerman, T., Moore, A.L., Stringer, D.J., Blevins, P., Demmler-Harrison, G.J., Ginsberg, M., Kriner, P., Waterman, S., Smole, S., Guevara, H.F., Belongia, E.A., Clark, P.A., Beatrice, S.T., Donis, R., Katz, J., Finelli, L., Bridges, C.B., Shaw, M., Jernigan, D.B., Uyeki, T.M., Smith, D.J., Klimov, A.I., Cox, N.J., 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197-201.
Garten, W., Klenk, H.D., 1999. Understanding influenza virus pathogenicity. Trends in microbiology 7, 99-100.
Gerhard, W., Mozdzanowska, K., Zharikova, D., 2006. Prospects for universal influenza virus vaccine. Emerging infectious diseases 12, 569-574.
Gething, M.J., McCammon, K., Sambrook, J., 1986. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46, 939-950.
Girard, M.P., Tam, J.S., Assossou, O.M., Kieny, M.P., 2010. The 2009 A (H1N1) influenza virus pandemic: A review. Vaccine 28, 4895-4902.
Gomez Lorenzo, M.M., Fenton, M.J., 2013. Immunobiology of influenza vaccines. Chest 143, 502-510.
Holmes, E.C., Ghedin, E., Miller, N., Taylor, J., Bao, Y., St George, K., Grenfell, B.T., Salzberg, S.L., Fraser, C.M., Lipman, D.J., Taubenberger, J.K., 2005. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS biology 3, e300.
Kalthoff, D., Globig, A., Beer, M., 2010. (Highly pathogenic) avian influenza as a zoonotic agent. Veterinary microbiology 140, 237-245.
Kanekiyo, M., Wei, C.J., Yassine, H.M., McTamney, P.M., Boyington, J.C., Whittle, J.R., Rao, S.S., Kong, W.P., Wang, L., Nabel, G.J., 2013. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature.
Khurana, S., Verma, S., Verma, N., Crevar, C.J., Carter, D.M., Manischewitz, J., King, L.R., Ross, T.M., Golding, H., 2011. Bacterial HA1 vaccine against pandemic H5N1 influenza virus: evidence of oligomerization, hemagglutination, and cross-protective immunity in ferrets. Journal of virology 85, 1246-1256.
Kim, J.I., Park, M.S., 2012. N-linked glycosylation in the hemagglutinin of influenza A viruses. Yonsei medical journal 53, 886-893.
King, J.C., Jr., Cox, M.M., Reisinger, K., Hedrick, J., Graham, I., Patriarca, P., 2009. Evaluation of the safety, reactogenicity and immunogenicity of FluBlok trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy children aged 6-59 months. Vaccine 27, 6589-6594.
Kobayashi, Y., Suzuki, Y., 2012. Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin. Journal of virology 86, 3446-3451.
Kornfeld, R., Kornfeld, S., 1985. Assembly of asparagine-linked oligosaccharides. Annual review of biochemistry 54, 631-664.
Krystal, M., Elliott, R.M., Benz, E.W., Jr., Young, J.F., Palese, P., 1982. Evolution of influenza A and B viruses: conservation of structural features in the hemagglutinin genes. Proceedings of the National Academy of Sciences of the United States of America 79, 4800-4804.
Lambert, L.C., Fauci, A.S., 2010. Influenza vaccines for the future. The New England journal of medicine 363, 2036-2044.
Liu, W.C., Lin, S.C., Yu, Y.L., Chu, C.L., Wu, S.C., 2010. Dendritic cell activation by recombinant hemagglutinin proteins of H1N1 and H5N1 influenza A viruses. Journal of virology 84, 12011-12017.
Liu, Y.J., 2001. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259-262.
Medina, R.A., Garcia-Sastre, A., 2011. Influenza A viruses: new research developments. Nature reviews. Microbiology 9, 590-603.
Morens, D.M., Taubenberger, J.K., Fauci, A.S., 2013. H7N9 Avian Influenza A Virus and the Perpetual Challenge of Potential Human Pandemicity. mBio 4.
Nelson, M.I., Simonsen, L., Viboud, C., Miller, M.A., Taylor, J., George, K.S., Griesemer, S.B., Ghedin, E., Sengamalay, N.A., Spiro, D.J., Volkov, I., Grenfell, B.T., Lipman, D.J., Taubenberger, J.K., Holmes, E.C., 2006. Stochastic processes are key determinants of short-term evolution in influenza a virus. PLoS pathogens 2, e125.
Nelson, M.I., Viboud, C., Simonsen, L., Bennett, R.T., Griesemer, S.B., St George, K., Taylor, J., Spiro, D.J., Sengamalay, N.A., Ghedin, E., Taubenberger, J.K., Holmes, E.C., 2008. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS pathogens 4, e1000012.
Neumann, G., Chen, H., Gao, G.F., Shu, Y., Kawaoka, Y., 2010. H5N1 influenza viruses: outbreaks and biological properties. Cell research 20, 51-61.
Nobusawa, E., Aoyama, T., Kato, H., Suzuki, Y., Tateno, Y., Nakajima, K., 1991. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182, 475-485.
Ohuchi, R., Ohuchi, M., Garten, W., Klenk, H.D., 1997. Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. Journal of virology 71, 3719-3725.
Okuno, Y., Isegawa, Y., Sasao, F., Ueda, S., 1993. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. Journal of virology 67, 2552-2558.
Peiris, J.S., Tu, W.W., Yen, H.L., 2009. A novel H1N1 virus causes the first pandemic of the 21st century. European journal of immunology 39, 2946-2954.
Roberts, P.C., Garten, W., Klenk, H.D., 1993. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. Journal of virology 67, 3048-3060.
Schneemann, A., Speir, J.A., Tan, G.S., Khayat, R., Ekiert, D.C., Matsuoka, Y., Wilson, I.A., 2012. A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. Journal of virology 86, 11686-11697.
Skehel, J.J., Wiley, D.C., 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual review of biochemistry 69, 531-569.
Sriwilaijaroen, N., Suzuki, Y., 2012. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proceedings of the Japan Academy. Series B, Physical and biological sciences 88, 226-249.
Steel, J., Lowen, A.C., Wang, T.T., Yondola, M., Gao, Q., Haye, K., Garcia-Sastre, A., Palese, P., 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1.
Subbarao, K., Matsuoka, Y., 2013. The prospects and challenges of universal vaccines for influenza. Trends in microbiology.
Sui, J., Hwang, W.C., Perez, S., Wei, G., Aird, D., Chen, L.M., Santelli, E., Stec, B., Cadwell, G., Ali, M., Wan, H., Murakami, A., Yammanuru, A., Han, T., Cox, N.J., Bankston, L.A., Donis, R.O., Liddington, R.C., Marasco, W.A., 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature structural & molecular biology 16, 265-273.
Suzuki, Y., 2005. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biological & pharmaceutical bulletin 28, 399-408.
Sym, D., Patel, P.N., El-Chaar, G.M., 2009. Seasonal, avian, and novel H1N1 influenza: prevention and treatment modalities. The Annals of pharmacotherapy 43, 2001-2011.
Throsby, M., van den Brink, E., Jongeneelen, M., Poon, L.L., Alard, P., Cornelissen, L., Bakker, A., Cox, F., van Deventer, E., Guan, Y., Cinatl, J., ter Meulen, J., Lasters, I., Carsetti, R., Peiris, M., de Kruif, J., Goudsmit, J., 2008. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PloS one 3, e3942.
Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., Turmelle, A.S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M.R., Tang, K., Rowe, L.A., Sammons, S., Xu, X., Frace, M., Lindblade, K.A., Cox, N.J., Anderson, L.J., Rupprecht, C.E., Donis, R.O., 2012. A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America 109, 4269-4274.
Tsuchiya, E., Sugawara, K., Hongo, S., Matsuzaki, Y., Muraki, Y., Nakamura, K., 2002. Role of overlapping glycosylation sequons in antigenic properties, intracellular transport and biological activities of influenza A/H2N2 virus haemagglutinin. The Journal of general virology 83, 3067-3074.
Vaque Rafart, J., Gil Cuesta, J., Brotons Agullo, M., 2009. [Main features of the new influenza virus a pandemic (H1N1)]. Medicina clinica 133, 513-521.
Verma, S., Dimitrova, M., Munjal, A., Fontana, J., Crevar, C.J., Carter, D.M., Ross, T.M., Khurana, S., Golding, H., 2012. Oligomeric recombinant H5 HA1 vaccine produced in bacteria protects ferrets from homologous and heterologous wild-type H5N1 influenza challenge and controls viral loads better than subunit H5N1 vaccine by eliciting high-affinity antibodies. Journal of virology 86, 12283-12293.
Vigerust, D.J., Shepherd, V.L., 2007. Virus glycosylation: role in virulence and immune interactions. Trends in microbiology 15, 211-218.
Vigerust, D.J., Ulett, K.B., Boyd, K.L., Madsen, J., Hawgood, S., McCullers, J.A., 2007. N-linked glycosylation attenuates H3N2 influenza viruses. Journal of virology 81, 8593-8600.
Viswanathan, K., Chandrasekaran, A., Srinivasan, A., Raman, R., Sasisekharan, V., Sasisekharan, R., 2010. Glycans as receptors for influenza pathogenesis. Glycoconjugate journal 27, 561-570.
Wagner, R., Wolff, T., Herwig, A., Pleschka, S., Klenk, H.D., 2000. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. Journal of virology 74, 6316-6323.
Wang, C.C., Chen, J.R., Tseng, Y.C., Hsu, C.H., Hung, Y.F., Chen, S.W., Chen, C.M., Khoo, K.H., Cheng, T.J., Cheng, Y.S., Jan, J.T., Wu, C.Y., Ma, C., Wong, C.H., 2009. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A 106, 18137-18142.
Wang, T.T., Tan, G.S., Hai, R., Pica, N., Ngai, L., Ekiert, D.C., Wilson, I.A., Garcia-Sastre, A., Moran, T.M., Palese, P., 2010a. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proceedings of the National Academy of Sciences of the United States of America 107, 18979-18984.
Wang, T.T., Tan, G.S., Hai, R., Pica, N., Petersen, E., Moran, T.M., Palese, P., 2010b. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS pathogens 6, e1000796.
Wanzeck, K., Boyd, K.L., McCullers, J.A., 2011. Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice. American journal of respiratory and critical care medicine 183, 767-773.
Watanabe, Y., Ibrahim, M.S., Suzuki, Y., Ikuta, K., 2012. The changing nature of avian influenza A virus (H5N1). Trends in microbiology 20, 11-20.
Wei, C.J., Boyington, J.C., Dai, K., Houser, K.V., Pearce, M.B., Kong, W.P., Yang, Z.Y., Tumpey, T.M., Nabel, G.J., 2010a. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Science translational medicine 2, 24ra21.
Wei, C.J., Boyington, J.C., McTamney, P.M., Kong, W.P., Pearce, M.B., Xu, L., Andersen, H., Rao, S., Tumpey, T.M., Yang, Z.Y., Nabel, G.J., 2010b. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060-1064.
Wei, C.J., Xu, L., Kong, W.P., Shi, W., Canis, K., Stevens, J., Yang, Z.Y., Dell, A., Haslam, S.M., Wilson, I.A., Nabel, G.J., 2008. Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. Journal of virology 82, 6200-6208.
Wei, C.J., Yassine, H.M., McTamney, P.M., Gall, J.G., Whittle, J.R., Boyington, J.C., Nabel, G.J., 2012. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Science translational medicine 4, 147ra114.
Wiley, D.C., Skehel, J.J., 1987. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual review of biochemistry 56, 365-394.
Yoshida, R., Igarashi, M., Ozaki, H., Kishida, N., Tomabechi, D., Kida, H., Ito, K., Takada, A., 2009. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS pathogens 5, e1000350.
Zhu, X., Yu, W., McBride, R., Li, Y., Chen, L.M., Donis, R.O., Tong, S., Paulson, J.C., Wilson, I.A., 2013. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proceedings of the National Academy of Sciences of the United States of America 110, 1458-1463.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. H7N9禽流感血凝素之 重組蛋白、腺病毒載體與類病毒顆粒之 免疫性研究
2. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
3. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
4. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
5. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
6. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
7. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
8. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
9. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
10. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
11. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
12. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
13. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
14. 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
15. 表達呼吸道融合病毒融合蛋白及其特性分析
 
* *