帳號:guest(3.144.23.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周仕堇
作者(外文):Chou, Shih-Ching
論文名稱(中文):巴比妥酸衍生物之設計與合成應用於抗胃幽門螺旋菌藥物與莽草酸去氫酶抑制劑之開發
論文名稱(外文):Design, synthesis and biological evaluation of barbiturate-conjugated derivatives as anti-Helicobacter pylori toward the shikimate pathway
指導教授(中文):王雯靜
指導教授(外文):Wang, Wen-Ching
口試委員(中文):張大慈
許銘華
口試委員(外文):Chang, Dah-Tsyr
Hsu, Ming-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:100080522
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:142
中文關鍵詞:胃幽門螺旋菌莽草酸路徑莽草酸去氫酶藥物合成巴比妥酸分子模擬
外文關鍵詞:Helicobacter pylorishikimate pathwayshikimate dehydrogenasechemical synthesisbarbituric acidmolecule docking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:275
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胃幽門螺旋桿菌 (Helicobacter pylori, H. pylori),和許多腸胃道相關疾病有密不可分的關聯,如:胃潰瘍和胃腺癌的發生。1994年時國際癌症研究署(International Agency for Research on Cancer, IARC)和世界衛生組織(World health Organization, WHO)更宣布將H. pylori定為一級致癌的微生物,然而具有抗藥性的H. pylori臨床菌株比例隨著藥物濫用逐年激增。為了尋找更有效的抑菌劑,我們將目標放在shikimate pathway當中的一個酵素,莽草酸去氫酶(shikimate dehydrogenase, E.C. 1.1.1.25),其為shikimate pathway中第四個酵素,以菸草醯胺腺嘌呤二核苷酸磷酸鹽(Nicotiamide adenine dinucleotide phosphate, NADPH)為輔,催化3-dehydroshikimate轉變為shikimate的過程。
本研究以先前篩出之藥物7a為基礎,設計一系列共66種不同的巴比多酸衍生物 (barbiturate derivatives)。實驗結果發現7b、7d、7e、7g、7i 與25a等藥物具有抑制H. pylori生長的活性,在對抗26695和臨床分離菌株(v574, v633, v1086, v1254, v1267, v1354 與 v2311)的生長測試(MBC assay)中,具有抑制效果(4 mg/L ~10 mg/L)。另外在針對胃幽門螺旋菌莽草酸去氫酶(H. pylori shikimate dehydrogenase, HpSDH)的酵素活性抑制測試亦呈現相同的趨勢。本實驗求得7b、7e、7i、17、25a等藥物對HpSDH的IC50 (10~30 μM) 和7e、7i、17、25a在較高濃度下對NADP+抑制型態為競爭型,常數(Ki)介於2~7 μM之間;而對shikimate則是non-competitive 和uncompetitive為主,Ki值也較大(15~25 μM)。
本研究進一步藉由生物資訊分析與分子模擬的方式探討分子結構與抑制活性之間的關聯(Structureactivity relationship, SAR)。利用Discovery Studio 3.5來建立有效分子和HpSDH 之間的docking 模型模擬並探討重要的鍵結和氨基酸。本研究發現能否和結合位置中兩個氨基酸(Lys69 和Arg71)形成cation-π對於抑制活性可能有重要的影響。最後我們預測並建立可能的分子最佳化模型。
Persistent infection of Helicabacter pylori (H. pylori) is associated with intestinal disease including duodenal ulcers and gastric adenocarcinoma. International Agency for Research on Cancer and WHO had claimed H. pylori as a group 1 carcinogen of human being in 1994. Resistant clinical H. pylori isolates have rapidly increased due to a high use of antibiotic reagents. In an aim to search for new antibacterial agents against resistant isolates, we have targeted shikimate dehydrogenase (SDH, E.C. 1.1.1.25) that catalyzes 3-dehydroshikimate into shikimate, using Nicotiamide adenine dinucleotide phosphate as cofactor.
In this study, we reported a structure-based approach to identify inhibitors containing barbiturate moiety against H. pylori shikimate dehydrogenase (HpSDH). Series of barbiturate-conjugated compounds have been synthesized. Results from bactericidal activity against reference strain (26695) as well as different clinically isolated strains (v574, v633, v1086, v1254, v1267, v1354 and v2311) showed that compounds 7b, 7d, 7e, 7g, 7h and 25a displayed bactericidal activity (4.0 mg/L 10 mg/L). In parallel, these compounds exhibited inhibitory effects toward HpSDH, 7b, 7e, 7i, 17 and 25a with IC50 values of 10 to 30 μM). Ki values and inhibition types of 7e, 7i, 17 and 25a were determined respective. Effective compounds showed mixed-inhibition toward NADPH with Ki values from 2 to 7 μM; while these compounds showed non-competitive or
III
uncompetitive toward shikimate with Ki values from 15 to 25 μM. HpSDH-inhibitor docking models are built by Discovery Studio 3.5 (DS 3.5), which reveals crucial binding residues Lys69 and Arg71. Results from this study provide a basis for new antibacterial development targeting HpSDH.
中 文 摘 要.................................................................................................................. I
Abstract .............................................................................................................................. II
致 謝 ............................................................................................................................... IV
Key words and abbreviations ...................................................................................... XIV
1. Introduction ................................................................................................................ 1
1.1 Helicobacter pylori. (H. pylori). ......................................................................... 1
1.1.1 History of Helicobacter pylori ................................................................. 1
1.1.2 Morphology and Microbiology of Helicobacter pylori ........................... 1
1.1.3 Epidemiology and disease association of Helicobacter pylori ................ 2
1.1.4 Treatments of Helicobacter pylori ........................................................... 4
1.2 Shikimate pathway .............................................................................................. 5
1.3 Shikimate Dehydrogenase .................................................................................. 6
1.4 Shikimate Kinase ................................................................................................ 7
1.5 Barbituric acid and barbiturate derivatives ......................................................... 8
2. Preliminary results and specific aims of this study .................................................. 9
2.1 Preliminary results of H. pylori study ................................................................. 9
2.2 Preliminary results of shikimate dehydrogenase ................................................ 9
2.3 Purposes and specific aims ............................................................................... 10
3. Chemistry ................................................................................................................... 11
3.1 Synthesis of barbiturate-conjugated derivatives ............................................... 11
3.2 Synthesis of hydantoin-conjugated derivatives ................................................ 13
3.3 Synthesis of Bis- barbiturate-conjugated derivatives ........................................ 14
3.4 Synthesis of complicate barbiturate-conjugated derivatives ............................. 16
4. Materials and experimental section ........................................................................ 18
4.1 General procedure for compound synthesis ...................................................... 18
4.2 General procedure A for the synthesis of barbiturate- conjugated derivatives . 18
4.2.1 Barbiturate- conjugated derivatives (Scheme 1) .................................... 19
4.2.2 Hydantoin- conjugated derivatives (Scheme 2) ..................................... 19
4.2.3 Bis- barbiturate- conjugated derivatives (Schemes 3 and 4) .................. 19
4.2.4 (E)-N-(4-(3-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene) prop-1- en-1- yl)phenyl) benzamide (Scheme 5) ............................................................ 19
4.2.5 N-phenyl-4-((2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene) methyl) benzamide (Scheme 6) ....................................................................................... 20
4.2.6 1,3-dimethyl-5-(4-(2-(piperidin-1-yl)ethoxy)benzylidene)
VIII
pyrimidine-2,4,6 (1H,3H,5H)-trione (Scheme 7) ............................................... 20
4.2.7 (E)-1,3-diallyl-5-(3-phenylallylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (Scheme 8) .......................................................................................................... 21
4.2.8 (E)-1,3-diallyl-5-(3-(4-methoxyphenyl)allylidene)pyrimidine-2,4,6 (1H,3H,5H) -trione (Scheme 8) .......................................................................... 21
4.3 H. pylori strains and culture .............................................................................. 22
4.4 Minimum bactericidal concentration test (MBC Test) ..................................... 22
4.5 Synergistic combination .................................................................................... 22
4.6 HpSDH (aroE) expression, purification and condensation. ............................. 23
4.7 HpSDH relative enzyme activity determination (aroE assay) .......................... 24
4.8 Enzyme kinetic parameters of clinical isolate HpSDHs………………….......25
4.9 Sequences multi-alignment and Circular dichroism spectra ............................. 26
4.10 Determination of selected compounds IC50 toward HpSDH. ......................... 26
4.11 Inhibition constant (Ki) determination. ........................................................... 27
4.11.1 Inhibitor constant (Ki) determination toward shikimic acid .................. 27
4.11.2 Inhibitor constant (Ki) determination toward NADP+ ........................... 27
4.12 Molecular modeling and structure-activity relationship (SAR) analysis ........ 28
4.12.1 Inhibitor binding sites prediction of 26695 HpSDH ............................ 28
4.12.2 Preparation of the target cavity. ........................................................... 28
4.12.3 Molecular docking for structure-activity relationship analysis ........... 29
4.12.4 Compound optimization ....................................................................... 29
4.13 HpSK (aroK) expression, purification and condensation ............................... 30
4.14 Relative HpSK activity determination (aroK assay). ...................................... 31
5. Result .......................................................................................................................... 32
5.1 Chemical synthesis of barbiturate derivatives .................................................. 32
5.2 MBC value determination of 26695 and clinical isolated strains of H. pylori . 32
5.3 Synergistic effect of effective compounds toward wild type H. pylori ............ 34
5.4 H.pylori shikimate dehydrogenase (HpSDH) expresstion and purification ..... 35
5.5 Relative activity of 26695- HpSDH and clinical variant strains HpSDH ......... 35
5.6 Sequence alignment and secondary structure determination ............................ 35
5.7 Enzymatic kinetics parameters determination .................................................. 36
5.8 Potential inhibitor screening toward different HpSDHs ................................... 36
5.9 IC50 determination of effective compounds toward HpSDHs .......................... 37
5.10 Inhibition constant determination toward shikimate and NADP+ .................. 37
5.10.1 Inhibition constants and inhibition type toward NADP+ ..................... 38
5.10.2 Inhibition constants and inhibition type toward shikimate. ................. 38
5.11 3D compound binding pockets prediction ...................................................... 38
5.12 Molecular docking in the predicted HpSDH cavity ........................................ 39
IX
5.13 Lead optimization of compounds .................................................................... 40
5.14 Results for H. pylori shikimate kinase (HpSK) activity study........................ 42
5.14.1 HpSK expresstion and purification ...................................................... 42
5.14.2 HpSK preliminary screening (100 μM) ............................................... 42
6. Discussion and conclusion ........................................................................................ 43
6.1 Compounds design and synthesis ..................................................................... 43
6.2 Essential core structure and substituent affect inhibition activity against H.pylori… .................................................................................................................. 44
6.3 Secondary structure analysis by circular dichroism (CD) ................................ 45
6.4 Essential core structure and substituent affect the inhibition activity against HpSDH…. .................................................................................................................. 46
6.5 Structure-activity relationship (SAR) analysis ................................................. 47
6.6 Enzymatic kinetic analysis ................................................................................ 48
6.7 Interaction with amino acid in the cavity .......................................................... 49
6.7.1 Hydrogen bonds formation .................................................................... 49
6.7.2 Cation- π interaction formation .............................................................. 49
6.8 Lead optimizations of compounds .................................................................... 51
6.9 Discussion of HpSK screening ......................................................................... 52
6.10 Conclusions and Future works ........................................................................ 53
TABLES ............................................................................................................................ 54
FIGURES .......................................................................................................................... 67
---------------------------------------------------------------------------------------------------------------------
Appendix ........................................................................................................................... 97
中 文 摘 要................................................................................................................ 98
Abstract ............................................................................................................................. 99
1. Introduction ............................................................................................................ 100
1.1 Global burden of the cancer ............................................................................ 100
1.2 Common features of the cancer ...................................................................... 100
1.3 Strategies for cancer treatments ...................................................................... 102
1.4 Barbiturate derivatives as potential anti- cancer agents .................................. 103
1.5 Preliminary result of anticancer screening ...................................................... 104
2. Material and Methods ........................................................................................... 105
2.1 Chemicals and reagents ................................................................................... 105
2.2 Cancer cell lines and cell culture .................................................................... 105
2.3 Tetrazolium dye methylthiotetrazole assay (MTT assay) ............................... 105
X
2.4 IC50 determination ........................................................................................... 106
3. Results ..................................................................................................................... 107
3.1 Preliminary screening of anticancer activity. .................................................. 107
3.2 IC50 determination of effective compounds. ................................................... 107
4. Disscussions .......................................................................... 錯誤! 尚未定義書籤。
4.1 Preliminary screening of six cancer cell lines ................................................. 109
4.2 IC50 and structure- activity relationship of effective compounds ................... 109
5. Conclusion and future direction ............................................................................ 111
Appendix tables .............................................................................................................. 112
Appendix figures ............................................................................................................ 116
Reference........................................................................................................................ 121
Supporting Informations ...............................................................................................128
1. Marshall, B., Helicobacter pylori: 20 years on. Clin Med, 2002. 2(2): p. 147-52.
2. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5.
3. Goodwin, C.S., Helicobacter pylori: 10th anniversary of its culture in April 1982. Gut, 1993. 34(3): p. 293-4.
4. Goodwin, C.S., et al., Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. Journal of Medical Microbiology, 1985. 19(2): p. 257-67.
5. Romaniuk, P.J., et al., Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J Bacteriol, 1987. 169(5): p. 2137-41.
6. Tiveljung, A., et al., Identification of Helicobacter in gastric biopsies by PCR based on 16S rDNA sequences: a matter of little significance for the prediction of H. pylori-associated gastritis? Journal of Medical Microbiology, 1998. 47(8): p. 695-704.
7. Falush, D., et al., Traces of human migrations in Helicobacter pylori populations. Science, 2003. 299(5612): p. 1582-5.
8. Kostrzynska, M., et al., Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol, 1991. 173(3): p. 937-46.
9. Yoshiyama, H. and T. Nakazawa, Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microbes Infect, 2000. 2(1): p. 55-60.
10. Ottemann, K.M. and A.C. Lowenthal, Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect Immun, 2002. 70(4): p. 1984-90.
11. Skene, C., et al., Helicobacter pylori flagella: antigenic profile and protective immunity. FEMS Immunol Med Microbiol, 2007. 50(2): p. 249-56.
12. Brown, L.M., Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev, 2000. 22(2): p. 283-97.
13. Amieva, M.R. and E.M. El-Omar, Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology, 2008. 134(1): p. 306-23.
122
14. Kusters, J.G., A.H. van Vliet, and E.J. Kuipers, Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev, 2006. 19(3): p. 449-90.
15. Bures, J., et al., [Epidemiology of Helicobacter pylori infection]. Vnitr Lek, 2011. 57(12): p. 993-9.
16. Fock, K.M. and T.L. Ang, Epidemiology of Helicobacter pylori infection and gastric cancer in Asia. J Gastroenterol Hepatol, 2010. 25(3): p. 479-86.
17. Malaty, H.M., Epidemiology of Helicobacter pylori infection. Best Pract Res Clin Gastroenterol, 2007. 21(2): p. 205-14.
18. Lin, J.T., et al., Seroprevalence study of Helicobacter pylori infection in patients with gastroduodenal diseases. J Formos Med Assoc, 1994. 93(2): p. 122-7.
19. !!! INVALID CITATION !!!
20. Handa, O., Y. Naito, and T. Yoshikawa, CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol, 2007. 73(11): p. 1697-702.
21. Tegtmeyer, N., S. Wessler, and S. Backert, Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J, 2011. 278(8): p. 1190-202.
22. Backert, S., N. Tegtmeyer, and M. Selbach, The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. Helicobacter, 2010. 15(3): p. 163-76.
23. McNamara, D. and E. El-Omar, Helicobacter pylori infection and the pathogenesis of gastric cancer: a paradigm for host-bacterial interactions. Dig Liver Dis, 2008. 40(7): p. 504-9.
24. Parsonnet, J., et al., Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med, 1991. 325(16): p. 1127-31.
25. Mendall, M.A. and T.C. Northfield, Transmission of Helicobacter pylori infection. Gut, 1995. 37(1): p. 1-3.
26. Graham, D.Y., et al., Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer. A randomized, controlled study. Ann Intern Med, 1992. 116(9): p. 705-8.
27. Nishizawa, T., et al., Proton pump inhibitor-amoxicillin-clarithromycin versus proton pump inhibitor-amoxicillin-metronidazole as first-line Helicobacter pylori eradication therapy. J Clin Biochem Nutr, 2012. 51(2): p. 114-6.
123
28. Ulmer, H.J., A. Beckerling, and G. Gatz, Recent use of proton pump inhibitor-based triple therapies for the eradication of H pylori: a broad data review. Helicobacter, 2003. 8(2): p. 95-104.
29. Gerrits, M.M., et al., Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis, 2006. 6(11): p. 699-709.
30. Broutet, N., et al., Risk factors for failure of Helicobacter pylori therapy--results of an individual data analysis of 2751 patients. Aliment Pharmacol Ther, 2003. 17(1): p. 99-109.
31. Bentley, R., The shikimate pathway--a metabolic tree with many branches. Crit Rev Biochem Mol Biol, 1990. 25(5): p. 307-84.
32. Herrmann, K.M., The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol, 1995. 107(1): p. 7-12.
33. Herrmann, K.M., The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell, 1995. 7(7): p. 907-919.
34. Roberts, C.W., et al., The shikimate pathway and its branches in apicomplexan parasites. J Infect Dis, 2002. 185 Suppl 1: p. S25-36.
35. Herrmann, K.M. and L.M. Weaver, The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol, 1999. 50: p. 473-503.
36. Maclean, J., et al., Crystallization and preliminary X-ray analysis of shikimate dehydrogenase from Escherichia coli. Acta Crystallogr D Biol Crystallogr, 2000. 56(Pt 4): p. 512-5.
37. Coggins, J.R., et al., The arom multifunctional enzyme from Neurospora crassa. Methods Enzymol, 1987. 142: p. 325-41.
38. Coggins, J.R., et al., Functional domains involved in aromatic amino acid biosynthesis. Biochem Soc Trans, 1985. 13(2): p. 299-303.
39. Chaudhuri, S., I.A. Anton, and J.R. Coggins, Shikimate dehydrogenase from Escherichia coli. Methods Enzymol, 1987. 142: p. 315-20.
40. Cheng, W.C., Y.N. Chang, and W.C. Wang, Structural basis for shikimate-binding specificity of Helicobacter pylori shikimate kinase. J Bacteriol, 2005. 187(23): p. 8156-63.
41. Krell, T., et al., Biochemical and X-ray crystallographic studies on shikimate kinase: the important structural role of the P-loop lysine. Protein Sci, 2001. 10(6): p. 1137-49.
124
42. Pereira, J.H., et al., Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 2): p. 2310-9.
43. Cheng, W.C., et al., Structures of Helicobacter pylori shikimate kinase reveal a selective inhibitor-induced-fit mechanism. PLoS One, 2012. 7(3): p. e33481.
44. Lopez-Munoz, F., R. Ucha-Udabe, and C. Alamo, The history of barbiturates a century after their clinical introduction. Neuropsychiatr Dis Treat, 2005. 1(4): p. 329-43.
45. Badawey, E.S.A.M. and I.M. El-Ashmawey, Nonsteroidal antiinflammatory agents - Part 1: Antiinflammatory, analgesic and antipyretic activity of some new 1-(pyrimidin-2-yl)-3-pyrazolin-5-ones and 2-(pyrimidin-2-yl)-1,2,4,5,6,7-hexahydro-3H-indazol-3-ones. Eur J Med Chem, 1998. 33(5): p. 349-361.
46. Singh, P., M. Kaur, and P. Verma, Design, synthesis and anticancer activities of hybrids of indole and barbituric acids-Identification of highly promising leads. Bioorg Med Chem Lett, 2009. 19(11): p. 3054-3058.
47. Yan, Q., et al., Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities. Eur J Med Chem, 2009. 44(10): p. 4235-4243.
48. Calamai, E., et al., 18F-barbiturates are PET tracers with diagnostic potential in Alzheimer's disease. Chem Commun (Camb), 2013. 49(8): p. 792-4.
49. Wang, J., et al., MMP inhibition by barbiturate homodimers. Bioorg Med Chem Lett, 2013. 23(2): p. 444-7.
50. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc, 2006. 1(6): p. 2876-90.
51. Yu, J., et al., Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 2010. 26(1): p. 46-52.
52. Mecozzi, S., A.P. West, Jr., and D.A. Dougherty, Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc Natl Acad Sci U S A, 1996. 93(20): p. 10566-71.
53. Pazianas, M., et al., Extracellular cation sensing by the enterocyte: prediction of a novel divalent cation "receptor". Biochem Biophys Res Commun, 1995. 210(3): p. 948-53.
125
54. Scrutton, N.S. and A.R. Raine, Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J, 1996. 319 ( Pt 1): p. 1-8.
55. Bornemann, S., et al., Escherichia coli chorismate synthase catalyzes the conversion of (6S)-6-fluoro-5-enolpyruvylshikimate-3-phosphate to 6-fluorochorismate. Implications for the enzyme mechanism and the antimicrobial action of (6S)-6-fluoroshikimate. J Biol Chem, 1995. 270(39): p. 22811-5.
56. Davies, G.M., et al., (6S)-6-fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob Agents Chemother, 1994. 38(2): p. 403-6.
57. Priestman, M.A., et al., Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Lett, 2005. 579(25): p. 5773-80.
58. Kulinich, A.V., N.A. Derevyanko, and A.A. Ishchenko, Synthesis, structure, and solvatochromism of merocyanine dyes based on barbituric acid. Russian Journal of General Chemistry, 2006. 76(9): p. 1441-1457.
59. Gallivan, J.P. and D.A. Dougherty, Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A, 1999. 96(17): p. 9459-64.
60. Poon, S.K., et al., Prevalence of antimicrobial resistance in Helicobacter pylori isolates in Taiwan in relation to consumption of antimicrobial agents. Int J Antimicrob Agents, 2009. 34(2): p. 162-5.
61. Lai, C.H., et al., Association of antibiotic resistance and higher internalization activity in resistant Helicobacter pylori isolates. J Antimicrob Chemother, 2006. 57(3): p. 466-71.
62. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010. 127(12): p. 2893-917.
63. Murray, C.J. and A.D. Lopez, Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet, 1997. 349(9063): p. 1436-42.
64. Hahn, W.C. and R.A. Weinberg, Modelling the molecular circuitry of cancer. Nat Rev Cancer, 2002. 2(5): p. 331-41.
65. Luo, J., N.L. Solimini, and S.J. Elledge, Principles of cancer therapy: oncogene and non-oncogene addiction. Cell, 2009. 136(5): p. 823-37.
126
66. Cheng, N., et al., Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res, 2008. 6(10): p. 1521-33.
67. Bhowmick, N.A., E.G. Neilson, and H.L. Moses, Stromal fibroblasts in cancer initiation and progression. Nature, 2004. 432(7015): p. 332-7.
68. Hanahan, D. and L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012. 21(3): p. 309-22.
69. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
70. Goodwin, L.G. and L.J. Bruce-Chwatt, Cecil Arthur Hoare. Biogr Mem Fellows R Soc, 1985. 31: p. 293-323.
71. Arima, T., T. Uemura, and T. Yamamoto, Structural features of the basal lamina in Reissner's membrane of the guinea pig. Acta Otolaryngol, 1985. 100(3-4): p. 194-200.
72. Duskova, J., V. Schreiber, and J. Jahodova, [Electron microscopy changes in hypophyseal lactotrophs in rats after the administration of metoclopramide]. Cesk Patol, 1985. 21(3): p. 191-6.
73. Vasquez, G.M., F. Qualls, and D. White, Morphogenesis of Stigmatella aurantiaca fruiting bodies. J Bacteriol, 1985. 163(2): p. 515-21.
74. Singh, P., M. Kaur, and P. Verma, Design, synthesis and anticancer activities of hybrids of indole and barbituric acids--identification of highly promising leads. Bioorg Med Chem Lett, 2009. 19(11): p. 3054-8.
75. Khalafi-Nezhad, A. and A. Hashemi, Microwave enhanced knoevenagel condensation of barbituric acid with aromatic aldehydes on basic alumina. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2001. 20(1): p. 9-11.
76. Alcerreca, G., et al., Preparation of benzylidene barbituric acids promoted by infrared irradiation in absence of solvent. Synthetic Communications, 2000. 30(7): p. 1295-1301.
77. Levesque, D.L., et al., Synthesis of a New Class of Uridine Phosphorylase Inhibitors. Journal of Heterocyclic Chemistry, 1993. 30(5): p. 1399-1404.
78. Hu, Y., et al., N-alkylation of N-monosubstituted sulfonamides in ionic liquids. Organic Preparations and Procedures International, 2004. 36(4): p. 347-351.
127
79. Luo, Y., et al., Discovery of (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione, a readily available and orally active glitazone for the treatment of concanavalin A-induced acute liver injury of BALB/c mice. J Med Chem, 2010. 53(1): p. 273-81.
80. Reddy, C.S., A. Nagaraj, and P. Jalapathi, A new and efficient method for the synthesis of 5-arylmethylene-pyrimidine-2,4,6-trione under solvent and catalyst free conditions. Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry, 2007. 46(4): p. 660-663.
81. Jursic, B.S. and E.D. Stevens, Mono C-alkylation and mono C-benzylation of barbituric acids through zinc/acid reduction of acyl, benzylidene, and alkylidene barbiturate intermediates. Tetrahedron Letters, 2003. 44(10): p. 2203-2210.
82. Tomasic, T., et al., Synthesis and antibacterial activity of 5-ylidenethiazolidin-4-ones and 5-benzylidene-4,6-pyrimidinediones. Eur J Med Chem, 2010. 45(4): p. 1667-1672.
83. Stevens, B.S.J.a.E.D., Mono C-alkylation and mono C-benzylation of barbituric acids through zinc/acid reduction of acyl, benzylidene, and alkylidene barbiturate intermediates. Tetrahedron Letters, 2003. 44: p. 2203-2210.
84. Haldar, M.K., et al., Synthesis of barbiturate-based methionine aminopeptidase-1 inhibitors. Bioorg Med Chem Lett, 2008. 18(7): p. 2373-6.
85. Sveshnikov, A.A., et al., [Radionuclide research on reparative bone formation during the treatment of spiral bone fractures of the leg by G. A. Ilizarov's method]. Med Radiol (Mosk), 1985. 30(8): p. 41-7.
86. Deb, M.L. and P.J. Bhuyan, Uncatalysed Knoevenagel condensation in aqueous medium at room temperature. Tetrahedron Letters, 2005. 46(38): p. 6453-6456.
87. Hook, E.W., 3rd, et al., Detection of Treponema pallidum in lesion exudate with a pathogen-specific monoclonal antibody. J Clin Microbiol, 1985. 22(2): p. 241-4.
88. Kitahara, M., et al., 7-Hydroxyguanine, a novel antimetabolite from a strain of Streptomyces purpurascens. I. Taxonomy of producing organism, fermentation, isolation and biological activity. J Antibiot (Tokyo), 1985. 38(8): p. 972-6.
89. Spengler, S.J., A. Stasiak, and N.R. Cozzarelli, The stereostructure of knots and catenanes produced by phage lambda integrative recombination: implications for mechanism and DNA structure. Cell, 1985. 42(1): p. 325-34
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 胃幽門螺旋菌之莽草酸去氫酶晶體結構研究
2. 以莽草酸激酶蛋白質結構為基礎之幽門螺旋菌和結核分枝桿菌的抑制劑開發研究
3. 利用定點突變探討胃幽門桿菌菌種26695之分枝酸變位酵素的活性區
4. Biochemical characterization and drug discovery of shikimate dehydrogenase from Helicobacter pylori
5. 以小鼠模式研究TH68治療幽門螺旋菌之成效
6. 以結構及酵素活性之方法研究胃幽門螺旋菌及結核分支桿菌之莽草酸途徑酵素:Shikimate Dehydrogenase 及 3-Dehydroquinate Synthase
7. Structure-guided identification of 7a-based analogues against shikimate dehydrogenase from Helicobacter pylori and Mycobacterium tuberculosis.
8. 胃幽門螺旋菌HP0164/HP0166雙分子系統之特性探討
9. 藻膠形成基因突變株對胃幽門螺旋菌生物膜形成及抗藥性之研究
10. 幽門螺旋菌之CagE、VirB7-like與VirB9-like蛋白質表現影響CagA磷酸化及造成細胞型態改變與凋亡
11. 胃幽門螺旋菌中 dehydroquinate synthase 和 shikimate dehydrogenase 酵素的表現、純化與結晶
12. Anabaena 2-epimerase 2.0 Å 之晶體結構
13. 根黴菌之天門冬胺酸蛋白酶、幽門螺旋菌之核醣蛋白L7/L12與棒狀桿菌之檸檬酸鹽合成酶之結晶研究
14. 細胞激素單核苷酸多型性和調控型T細胞與幽門螺旋菌相關胃腸道疾病的關聯性研究
15. 台灣地區接受三合一治療病人之胃幽門螺旋菌臨床菌株抗生素感受性分析及抗藥性基因之研究
 
* *