帳號:guest(3.144.45.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳欣儀
作者(外文):Chen, Hsin-Yi
論文名稱(中文):以酵母菌探討老化細胞中粒線體活性與動態平衡
論文名稱(外文):Assaying Mitochondrial Activity and Dynamics in Senescent Yeast Cells
指導教授(中文):張壯榮
口試委員(中文):鄭子豪
藍忠昱
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:100080517
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:82
中文關鍵詞:粒線體動態平衡細胞衰老酵母菌
外文關鍵詞:Mitochondrial dynamicsCellular senesceneYeast
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
粒線體的主要作用是維持細胞功能,如能量的供給,細胞週期的調控,訊息的傳遞,抗氧化壓力,鈣離子的運輸以及細胞凋亡等。粒線體是一高度動態的胞器,不斷分裂與融合造成粒線體的形態的變化,以協調對應不同的細胞生理狀態。破壞粒線體的動態平衡會影響到腫瘤的生成、神經元退化以及不正常的老化。而目前對於衰老的現象與粒線體動態平衡間的關聯尚不明確。在本實驗中,我們利用酵母菌為模型,來研究在老化細胞中,粒線體動態平衡和其生物能量的變化。我們發現在衰老的細胞中粒線體的型態會呈現碎裂狀,兩種主要參與粒線體分裂的蛋白質的表現量會增加。此外,粒線體基因數量、粒線體膜電位、活性氧的產生以及氧氣消耗量在衰老的細胞中都有所改變。這些結果指出在細胞衰老的過程中,粒線體活性的改變和粒線體動態平衡的調控有所關聯。進一步的蛋白質體分析也顯示了在衰老的細胞中,參與壓力反應的蛋白表現量也有所改變。所有這些研究結果皆強烈表明,線粒體動態平衡的轉變是伴隨著粒線體功能的改變並且和細胞衰老的進程密切相關。
Mitochondrion maintains important cellular functions, such as energy production, cell-cycle regulation, signal transduction, oxidative stress responses, calcium transferring and apoptosis. Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes to shape mitochondria and coordinate with different cellular states. Disrupting mitochondrial dynamics would affect tumorigenesis, neurodegeneration and abnormal aging. However, little is known about the relationship between senescence and mitochondrial dynamics. In this study, we applied the replicative aging model of yeast to examine the mitochondrial dynamics and bioenergetics in cellular senescence. We found that the mitochondrial morphology turns into fragmented and major mitochondrial fission proteins’ levels are elevated in senescent cells. Moreover, the changes of mtDNA copy number, mitochondrial membrane potential, reactive oxygen species (ROS) production and oxygen consumption were found in the senescent cells. Furthermore, the proteomics analysis showed that the expressions of proteins involved in stress response were changed in senescent cells. All these findings strongly suggested that the shift of mitochondrial dynamics is accompanied with the changes of mitochondrial activities and closely associated with cellular senescence. Our results indicated that a compensative signaling network existed to strengthen the mitochondrial-related cellular activities during cellular senescence.
CONTENT
口試委員審定書 #
致謝 i
中文摘要 iii
ABSTRACT iv
CONTENT v
LIST OF TABLES ix
LIST OF FIGURES x
I. Introduction 1
1.1 Mitochondria are important organelles in a cell 1
1.1.1. Mitochondria are dynamic organelles 1
1.1.2. The fission machinery of mitochondria in yeast 2
1.1.3 The fusion machinery of mitochondria in yeast 3
1.2 The functions of mitochondria 5
1.2.1 Mitochondria are key player in pathogenesis 6
1.2.2 Mitochondrial defects and diseases 7
1.2.3 Mitochondrial efficiency and oxidative stress 9
1.3 Aging 11
1.3.1 The free radical theory of aging 12
1.3.2 Mitochondrial theory of aging 12
1.3.3 Mitochondria and aging 13
1.4. Specific aim 15
II. Materials and methods 16
2.1 Yeast strains and medium 16
2.2 Experiment protocol 16
2.2.1 Yeast transformation 16
2.2.2 Cell sorting for replicative-age mother cells 17
2.2.3 Fixation of yeasts to observe the mitochondrial morphology 18
2.2.4 Bud scar staining 18
2.2.5 Yeast gemomic DNA extraction 19
2.2.6 Yeast RNA extraction 19
2.2.7 Reverse transcription polymerase chain reaction 20
2.2.8 Real time PCR 21
2.2.9 Mitochondrial membrane potential detection 22
2.2.10 ROS level measurement 23
2.2.11 Apoptosis 23
2.2.12 Flow cytometry 24
2.2.13 The bioenergetic measurement of mitochondria 25
2.2.14 Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption inoization-time of flight mass spectrometry (MALDI–TOF MS) 25
III. Results 27
3.1. Isolating the replicative aging yeasts as senescent models by biotin-streptavidin sorting system 27
3.2. The isolated yeast cells showed the senescence-related features 27
3.3. The mitochondrial morphology of senescent wild type yeasts turned into fragment 28
3.4. The fragmented mitochondria in senescent yeasts were caused by conventional mitochondrial dynamic pathways 29
3.5. Dnm1 and Fis1 were critical factors regulating the fission process in senescent cells 30
3.6. The senescent yeasts had higher mtDNA copy number 31
3.7. The mitochondria activity is altered in senescent yeasts 32
3.8. The mitochondrial-derived ROS production is affected in senescent cells 34
3.9. The assay of mitochondrial oxygen consumption rate (OCR) 35
3.10. The early apoptosis in senescent cells 36
3.11. Proteomic analysis between young and senescent yeast cells 38

IV. Conclusions and Discussion 40
4.1. Conclusions 40
4.2. Discussion 41
4.2.1. Mitochondrial fragmentation depends on fission-related proteins during senescence in yeasts. 41
4.2.2. The mitochondrial activity changes links to mitochondrial dynamics during cellular senescence 43
4.2.3. The fragmented mitochondria and apoptosis in senescent cells 45
4.2.4. The protein expression level changes during senescence 46
4.3. Perspective 47
References 71

LIST OF TABLES
Table 1. The primer sequence used in this study. 50
Table 2. The axial length of the log-phase and adsorbed cells. 51
Table 3. The flow cytometry analysis of apoptosis cell percentage by FITC-coupled Annexin V and PI staining. 52
Table 4. 2D-DIGE and MS analysis of the proteins I. 53
Table 5. 2D-DIGE and MS analysis of the proteins II. 54

LIST OF FIGURES
Figure 1. The fission process of mitochondrial dynamics in yeast. 55
Figure 2. The fusion process of mitochondrial dynamics in yeast. 56
Figure 3. The senescent yeast cells can be sorted by Biotin-Streptavidin system. 57
Figure 4. The percentage of the adsorbed cells with biotin-streptavidin beads. 58
Figure 5. Senescent cells have more bud scars. 59
Figure 6. Mitochondria become fragmented with culturing time in wild type cells. 60
Figure 7. Analysis of mitochondrial morphology in fusion/ fission gene deleted strains. 62
Figure 8. Analysis of the DNM1, FIS1 and FZO1 transcriptional level at different time point by RT-PCR. 63
Figure 9. Comparisons of the mtDNA copy number by real-time PCR. 65
Figure 10. Analysis of the mitochondrial membrane potential in log-phase and senescent cells. 67
Figure 11. Measurement of the mitochondria-derived ROS production level in log-phase and senescent cells. 69
Figure 12. Analysis the oxygen consumption in log-phase and senescent cells. 70
References
Aerts, A.M., P. Zabrocki, I.E. Francois, D. Carmona-Gutierrez, G. Govaert, C. Mao, B. Smets, F. Madeo, J. Winderickx, B.P. Cammue, and K. Thevissen. 2008. Ydc1p ceramidase triggers organelle fragmentation, apoptosis and accelerated ageing in yeast. Cellular and molecular life sciences : CMLS. 65:1933-1942.
Aerts, A.M., P. Zabrocki, G. Govaert, J. Mathys, D. Carmona-Gutierrez, F. Madeo, J. Winderickx, B.P. Cammue, and K. Thevissen. 2009. Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS letters. 583:113-117.
Alexander, C., M. Votruba, U.E. Pesch, D.L. Thiselton, S. Mayer, A. Moore, M. Rodriguez, U. Kellner, B. Leo-Kottler, G. Auburger, S.S. Bhattacharya, and B. Wissinger. 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature genetics. 26:211-215.
Ames, B.N. 1988. Measuring oxidative damage in humans: relation to cancer and ageing. IARC scientific publications:407-416.
Balaban, R.S., S. Nemoto, and T. Finkel. 2005. Mitochondria, oxidants, and aging. Cell. 120:483-495.
Baloh, R.H., R.E. Schmidt, A. Pestronk, and J. Milbrandt. 2007. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27:422-430.
Barrientos, A., J. Casademont, F. Cardellach, E. Ardite, X. Estivill, A. Urbano-Marquez, J.C. Fernandez-Checa, and V. Nunes. 1997. Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process. Biochemical and molecular medicine. 62:165-171.
Barros, M.H., B. Bandy, E.B. Tahara, and A.J. Kowaltowski. 2004. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. The Journal of biological chemistry. 279:49883-49888.
Bashford, C.L., and J.C. Smith. 1979. The use of optical probes to monitor membrane potential. Methods in enzymology. 55:569-586.
Befroy, D.E., K.F. Petersen, S. Dufour, G.F. Mason, R.A. de Graaf, D.L. Rothman, and G.I. Shulman. 2007. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 56:1376-1381.
Beregi, E., and O. Regius. 1987. Comparative morphological study of age related mitochondrial changes of the lymphocytes and skeletal muscle cells. Acta morphologica Hungarica. 35:219-224.
Bjorksten, J. 1968. The crosslinkage theory of aging. Journal of the American Geriatrics Society. 16:408-427.
Bossy-Wetzel, E., M.J. Barsoum, A. Godzik, R. Schwarzenbacher, and S.A. Lipton. 2003. Mitochondrial fission in apoptosis, neurodegeneration and aging. Current opinion in cell biology. 15:706-716.
Braun, R.J. 2012. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration. Frontiers in oncology. 2:182.
Breckenridge, D.G., M. Stojanovic, R.C. Marcellus, and G.C. Shore. 2003. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. The Journal of cell biology. 160:1115-1127.
Brys, K., J.R. Vanfleteren, and B.P. Braeckman. 2007. Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Experimental gerontology. 42:845-851.
Burbulla, L.F., G. Krebiehl, and R. Kruger. 2010a. Balance is the challenge--the impact of mitochondrial dynamics in Parkinson's disease. European journal of clinical investigation. 40:1048-1060.
Burbulla, L.F., C. Schelling, H. Kato, D. Rapaport, D. Woitalla, C. Schiesling, C. Schulte, M. Sharma, T. Illig, P. Bauer, S. Jung, A. Nordheim, L. Schols, O. Riess, and R. Kruger. 2010b. Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis. Human molecular genetics. 19:4437-4452.
Calabrese, V., E. Guagliano, M. Sapienza, M. Panebianco, S. Calafato, E. Puleo, G. Pennisi, C. Mancuso, D.A. Butterfield, and A.G. Stella. 2007. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochemical research. 32:757-773.
Calabrese, V., G. Scapagnini, A.M. Giuffrida Stella, T.E. Bates, and J.B. Clark. 2001. Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochemical research. 26:739-764.
Capozza, G., F. Guerrieri, G. Vendemiale, E. Altomare, and S. Papa. 1994. Age related changes of the mitochondrial energy metabolism in rat liver and heart. Archives of gerontology and geriatrics. 19 Suppl 1:31-38.
Casteilla, L., M. Rigoulet, and L. Penicaud. 2001. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB life. 52:181-188.
Chen, H., S.A. Detmer, A.J. Ewald, E.E. Griffin, S.E. Fraser, and D.C. Chan. 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology. 160:189-200.
Chen, H., M. Vermulst, Y.E. Wang, A. Chomyn, T.A. Prolla, J.M. McCaffery, and D.C. Chan. 2010. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 141:280-289.
Coleman, R., M. Silbermann, D. Gershon, and A.Z. Reznick. 1987. Giant mitochondria in the myocardium of aging and endurance-trained mice. Gerontology. 33:34-39.
Coonrod, E.M., M.A. Karren, and J.M. Shaw. 2007. Ugo1p is a multipass transmembrane protein with a single carrier domain required for mitochondrial fusion. Traffic. 8:500-511.
Cooper, J.M., V.M. Mann, and A.H. Schapira. 1992. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. Journal of the neurological sciences. 113:91-98.
Cornelius, E. 1972. Increased incidence of lymphomas in thymectomized mice--evidence for an immunological theory of aging. Experientia. 28:459.
Cortopassi, G.A., and N. Arnheim. 1990. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic acids research. 18:6927-6933.
Darzynkiewicz, Z., F. Traganos, L. Staiano-Coico, J. Kapuscinski, and M.R. Melamed. 1982. Interaction of rhodamine 123 with living cells studied by flow cytometry. Cancer research. 42:799-806.
Davies, V.J., A.J. Hollins, M.J. Piechota, W. Yip, J.R. Davies, K.E. White, P.P. Nicols, M.E. Boulton, and M. Votruba. 2007. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Human molecular genetics. 16:1307-1318.
Detmer, S.A., C. Vande Velde, D.W. Cleveland, and D.C. Chan. 2008. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Human molecular genetics. 17:367-375.
Druzhyna, N.M., G.L. Wilson, and S.P. LeDoux. 2008. Mitochondrial DNA repair in aging and disease. Mechanisms of ageing and development. 129:383-390.
Elwi, A.N., B. Lee, H.C. Meijndert, J.E. Braun, and S.W. Kim. 2012. Mitochondrial chaperone DnaJA3 induces Drp1-dependent mitochondrial fragmentation. The international journal of biochemistry & cell biology. 44:1366-1376.
Fahn, H.J., L.S. Wang, R.H. Hsieh, S.C. Chang, S.H. Kao, M.H. Huang, and Y.H. Wei. 1996. Age-related 4,977 bp deletion in human lung mitochondrial DNA. American journal of respiratory and critical care medicine. 154:1141-1145.
Fannjiang, Y., W.C. Cheng, S.J. Lee, B. Qi, J. Pevsner, J.M. McCaffery, R.B. Hill, G. Basanez, and J.M. Hardwick. 2004. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes & development. 18:2785-2797.
Figueiredo, P.A., S.K. Powers, R.M. Ferreira, H.J. Appell, and J.A. Duarte. 2009. Aging impairs skeletal muscle mitochondrial bioenergetic function. The journals of gerontology. Series A, Biological sciences and medical sciences. 64:21-33.
Frank, S., B. Gaume, E.S. Bergmann-Leitner, W.W. Leitner, E.G. Robert, F. Catez, C.L. Smith, and R.J. Youle. 2001. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental cell. 1:515-525.
Gadaleta, M.N., G. Rainaldi, A.M. Lezza, F. Milella, F. Fracasso, and P. Cantatore. 1992. Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutation research. 275:181-193.
Galloway, C.A., and Y. Yoon. 2012. Perspectives on: SGP symposium on mitochondrial physiology and medicine: what comes first, misshape or dysfunction? The view from metabolic excess. The Journal of general physiology. 139:455-463.
Gilkerson, R.W. 2009. Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction. The international journal of biochemistry & cell biology. 41:1899-1906.
Goldsmith, T.C. 2004. Aging as an evolved characteristic - Weismann's theory reconsidered. Medical hypotheses. 62:304-308.
Hales, K.G., and M.T. Fuller. 1997. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 90:121-129.
Han, X.J., K. Tomizawa, A. Fujimura, I. Ohmori, T. Nishiki, M. Matsushita, and H. Matsui. 2011. Regulation of mitochondrial dynamics and neurodegenerative diseases. Acta medica Okayama. 65:1-10.
Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. Journal of gerontology. 11:298-300.
Harman, D. 1972. The biologic clock: the mitochondria? Journal of the American Geriatrics Society. 20:145-147.
Harman, D. 1992. Free radical theory of aging. Mutation research. 275:257-266.
Harper, M.E., L. Bevilacqua, K. Hagopian, R. Weindruch, and J.J. Ramsey. 2004. Ageing, oxidative stress, and mitochondrial uncoupling. Acta physiologica Scandinavica. 182:321-331.
Haurie, V., M. Perrot, T. Mini, P. Jeno, F. Sagliocco, and H. Boucherie. 2001. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. The Journal of biological chemistry. 276:76-85.
Hayflick, L. 1965. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Experimental cell research. 37:614-636.
Hermann, G.J., J.W. Thatcher, J.P. Mills, K.G. Hales, M.T. Fuller, J. Nunnari, and J.M. Shaw. 1998. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. The Journal of cell biology. 143:359-373.
Holloszy, J.O., and E.K. Smith. 1986. Longevity of cold-exposed rats: a reevaluation of the "rate-of-living theory". Journal of applied physiology. 61:1656-1660.
Holt, I.J., A.E. Harding, and J.A. Morgan-Hughes. 1988. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 331:717-719.
Hoppins, S., L. Lackner, and J. Nunnari. 2007. The machines that divide and fuse mitochondria. Annual review of biochemistry. 76:751-780.
Iacovino, M., C. Granycome, H. Sembongi, M. Bokori-Brown, R.A. Butow, I.J. Holt, and J.M. Bateman. 2009. The conserved translocase Tim17 prevents mitochondrial DNA loss. Human molecular genetics. 18:65-74.
Ishihara, N., A. Jofuku, Y. Eura, and K. Mihara. 2003. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochemical and biophysical research communications. 301:891-898.
Jazwinski, S.M. 1993. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica. 91:35-51.
Jin, K. 2010. Modern Biological Theories of Aging. Aging and disease. 1:72-74.
Karren, M.A., E.M. Coonrod, T.K. Anderson, and J.M. Shaw. 2005. The role of Fis1p-Mdv1p interactions in mitochondrial fission complex assembly. The Journal of cell biology. 171:291-301.
Keil, U., A. Bonert, C.A. Marques, J.B. Strosznajder, F. Muller-Spahn, W.E. Muller, and A. Eckert. 2004. Elevated nitric oxide production mediates beta-amyloid-induced mitochondria failure. Polish journal of pharmacology. 56:631-634.
Kijima, K., C. Numakura, H. Izumino, K. Umetsu, A. Nezu, T. Shiiki, M. Ogawa, Y. Ishizaki, T. Kitamura, Y. Shozawa, and K. Hayasaka. 2005. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Human genetics. 116:23-27.
Kinnally, K.W., H. Tedeschi, and B.L. Maloff. 1978. Use of dyes to estimate the electrical potential of the mitochondrial membrane. Biochemistry. 17:3419-3428.
Kohrai, F., Y. Yamago, S. Yoshida, and T. Kohnoike. 1985. [Simple cysts of the kidney and aging]. Rinsho hoshasen. Clinical radiography. 30:385-389.
Koirala, S., Q. Guo, R. Kalia, H.T. Bui, D.M. Eckert, A. Frost, and J.M. Shaw. 2013. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proceedings of the National Academy of Sciences of the United States of America. 110:E1342-1351.
Korshunov, S.S., V.P. Skulachev, and A.A. Starkov. 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS letters. 416:15-18.
Kumaran, S., M. Subathra, M. Balu, and C. Panneerselvam. 2004. Age-associated decreased activities of mitochondrial electron transport chain complexes in heart and skeletal muscle: role of L-carnitine. Chemico-biological interactions. 148:11-18.
Lee, H.C., S.H. Li, J.C. Lin, C.C. Wu, D.C. Yeh, and Y.H. Wei. 2004a. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutation research. 547:71-78.
Lee, H.C., and Y.H. Wei. 1997. Mutation and oxidative damage of mitochondrial DNA and defective turnover of mitochondria in human aging. Journal of the Formosan Medical Association = Taiwan yi zhi. 96:770-778.
Lee, H.C., and Y.H. Wei. 2005. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The international journal of biochemistry & cell biology. 37:822-834.
Lee, H.C., and Y.H. Wei. 2007. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Experimental biology and medicine. 232:592-606.
Lee, Y.J., S.Y. Jeong, M. Karbowski, C.L. Smith, and R.J. Youle. 2004b. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Molecular biology of the cell. 15:5001-5011.
Li, Z., K. Okamoto, Y. Hayashi, and M. Sheng. 2004. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 119:873-887.
Liu, C.Y., C.F. Lee, and Y.H. Wei. 2007. Quantitative effect of 4977 bp deletion of mitochondrial DNA on the susceptibility of human cells to UV-induced apoptosis. Mitochondrion. 7:89-95.
Liu, J., H. Atamna, H. Kuratsune, and B.N. Ames. 2002. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Annals of the New York Academy of Sciences. 959:133-166.
Lowell, B.B., and G.I. Shulman. 2005. Mitochondrial dysfunction and type 2 diabetes. Science. 307:384-387.
Ludovico, P., F. Sansonetty, and M. Corte-Real. 2001a. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology. 147:3335-3343.
Ludovico, P., F. Sansonetty, M.T. Silva, and M. Corte-Real. 2003. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS yeast research. 3:91-96.
Ludovico, P., M.J. Sousa, M.T. Silva, C. Leao, and M. Corte-Real. 2001b. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 147:2409-2415.
Madeo, F., E. Frohlich, and K.U. Frohlich. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. The Journal of cell biology. 139:729-734.
Madeo, F., E. Frohlich, M. Ligr, M. Grey, S.J. Sigrist, D.H. Wolf, and K.U. Frohlich. 1999. Oxygen stress: a regulator of apoptosis in yeast. The Journal of cell biology. 145:757-767.
Madeo, F., E. Herker, S. Wissing, H. Jungwirth, T. Eisenberg, and K.U. Frohlich. 2004. Apoptosis in yeast. Current opinion in microbiology. 7:655-660.
Mai, S., M. Klinkenberg, G. Auburger, J. Bereiter-Hahn, and M. Jendrach. 2010. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. Journal of cell science. 123:917-926.
Mattenberger, Y., D.I. James, and J.C. Martinou. 2003. Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS letters. 538:53-59.
Mecocci, P., M.C. Polidori, T. Ingegni, A. Cherubini, F. Chionne, R. Cecchetti, and U. Senin. 1998. Oxidative damage to DNA in lymphocytes from AD patients. Neurology. 51:1014-1017.
Medvedev, Z.A. 1990. An attempt at a rational classification of theories of ageing. Biological reviews of the Cambridge Philosophical Society. 65:375-398.
Misko, A., S. Jiang, I. Wegorzewska, J. Milbrandt, and R.H. Baloh. 2010. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30:4232-4240.
Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 191:144-148.
Mozdy, A.D., J.M. McCaffery, and J.M. Shaw. 2000. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. The Journal of cell biology. 151:367-380.
Murphy, E., D. Bers, and R. Rizzuto. 2009. Mitochondria: from basic biology to cardiovascular disease. Journal of molecular and cellular cardiology. 46:765-766.
Nemoto, S., K. Takeda, Z.X. Yu, V.J. Ferrans, and T. Finkel. 2000. Role for mitochondrial oxidants as regulators of cellular metabolism. Molecular and cellular biology. 20:7311-7318.
Newmeyer, D.D., and S. Ferguson-Miller. 2003. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 112:481-490.
Nunnari, J., W.F. Marshall, A. Straight, A. Murray, J.W. Sedat, and P. Walter. 1997. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Molecular biology of the cell. 8:1233-1242.
Okamoto, K., and J.M. Shaw. 2005. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annual review of genetics. 39:503-536.
Okuno, D., R. Iino, and H. Noji. 2011. Rotation and structure of FoF1-ATP synthase. Journal of biochemistry. 149:655-664.
Ono, T., K. Isobe, K. Nakada, and J.I. Hayashi. 2001. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nature genetics. 28:272-275.
Otera, H., C. Wang, M.M. Cleland, K. Setoguchi, S. Yokota, R.J. Youle, and K. Mihara. 2010. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. The Journal of cell biology. 191:1141-1158.
Otsuga, D., B.R. Keegan, E. Brisch, J.W. Thatcher, G.J. Hermann, W. Bleazard, and J.M. Shaw. 1998. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. The Journal of cell biology. 143:333-349.
Peabody, C.A., M.D. Warner, H.A. Whiteford, and L.E. Hollister. 1987. Neuroleptics and the elderly. Journal of the American Geriatrics Society. 35:233-238.
Pesce, V., A. Cormio, F. Fracasso, J. Vecchiet, G. Felzani, A.M. Lezza, P. Cantatore, and M.N. Gadaleta. 2001. Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free radical biology & medicine. 30:1223-1233.
Petersen, K.F., S. Dufour, D. Befroy, R. Garcia, and G.I. Shulman. 2004. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. The New England journal of medicine. 350:664-671.
Polidori, M.C., P. Mecocci, S.E. Browne, U. Senin, and M.F. Beal. 1999. Oxidative damage to mitochondrial DNA in Huntington's disease parietal cortex. Neuroscience letters. 272:53-56.
Pozniakovsky, A.I., D.A. Knorre, O.V. Markova, A.A. Hyman, V.P. Skulachev, and F.F. Severin. 2005. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. The Journal of cell biology. 168:257-269.
Rafelski, S.M., M.P. Viana, Y. Zhang, Y.H. Chan, K.S. Thorn, P. Yam, J.C. Fung, H. Li, F. Costa Lda, and W.F. Marshall. 2012. Mitochondrial network size scaling in budding yeast. Science. 338:822-824.
Ramsey, J.J., K. Hagopian, T.M. Kenny, E.K. Koomson, L. Bevilacqua, R. Weindruch, and M.E. Harper. 2004. Proton leak and hydrogen peroxide production in liver mitochondria from energy-restricted rats. American journal of physiology. Endocrinology and metabolism. 286:E31-40.
Reddy, P.H., and M.F. Beal. 2008. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends in molecular medicine. 14:45-53.
Richter, C., J.W. Park, and B.N. Ames. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences of the United States of America. 85:6465-6467.
Rockenfeller, P., and F. Madeo. 2008. Apoptotic death of ageing yeast. Experimental gerontology. 43:876-881.
Santel, A., and M.T. Fuller. 2001. Control of mitochondrial morphology by a human mitofusin. Journal of cell science. 114:867-874.
Scheckhuber, C.Q., N. Erjavec, A. Tinazli, A. Hamann, T. Nystrom, and H.D. Osiewacz. 2007. Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nature cell biology. 9:99-105.
Schulz, J.B., D. Bremen, J.C. Reed, J. Lommatzsch, S. Takayama, U. Wullner, P.A. Loschmann, T. Klockgether, and M. Weller. 1997. Cooperative interception of neuronal apoptosis by BCL-2 and BAG-1 expression: prevention of caspase activation and reduced production of reactive oxygen species. Journal of neurochemistry. 69:2075-2086.
Serra, V., T. von Zglinicki, M. Lorenz, and G. Saretzki. 2003. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. The Journal of biological chemistry. 278:6824-6830.
Sesaki, H., and R.E. Jensen. 2001. UGO1 encodes an outer membrane protein required for mitochondrial fusion. The Journal of cell biology. 152:1123-1134.
Shadel, G.S., and D.A. Clayton. 1997. Mitochondrial DNA maintenance in vertebrates. Annual review of biochemistry. 66:409-435.
Shaw, J.M., and J. Nunnari. 2002. Mitochondrial dynamics and division in budding yeast. Trends in cell biology. 12:178-184.
Shigenaga, M.K., T.M. Hagen, and B.N. Ames. 1994. Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences of the United States of America. 91:10771-10778.
Sinclair, D.A., and L. Guarente. 1997. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell. 91:1033-1042.
Skowronek, P., G. Krummeck, O. Haferkamp, and G. Rodel. 1990. Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells. Current genetics. 18:265-267.
Smeal, T., J. Claus, B. Kennedy, F. Cole, and L. Guarente. 1996. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell. 84:633-642.
Steinkraus, K.A., M. Kaeberlein, and B.K. Kennedy. 2008. Replicative aging in yeast: the means to the end. Annual review of cell and developmental biology. 24:29-54.
Stock, D., A.G. Leslie, and J.E. Walker. 1999. Molecular architecture of the rotary motor in ATP synthase. Science. 286:1700-1705.
Stojanovski, D., O.S. Koutsopoulos, K. Okamoto, and M.T. Ryan. 2004. Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. Journal of cell science. 117:1201-1210.
Sugioka, R., S. Shimizu, and Y. Tsujimoto. 2004. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. The Journal of biological chemistry. 279:52726-52734.
Suzuki, H., T. Kumagai, A. Goto, and T. Sugiura. 1998. Increase in intracellular hydrogen peroxide and upregulation of a nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells. Biochemical and biophysical research communications. 249:542-545.
Szabadkai, G., A.M. Simoni, M. Chami, M.R. Wieckowski, R.J. Youle, and R. Rizzuto. 2004. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Molecular cell. 16:59-68.
Tandler, B., M. Dunlap, C.L. Hoppel, and M. Hassan. 2002. Giant mitochondria in a cardiomyopathic heart. Ultrastructural pathology. 26:177-183.
Tatsuta, T., and T. Langer. 2008. Quality control of mitochondria: protection against neurodegeneration and ageing. The EMBO journal. 27:306-314.
Terman, A., H. Dalen, J.W. Eaton, J. Neuzil, and U.T. Brunk. 2004. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Annals of the New York Academy of Sciences. 1019:70-77.
Tolkovsky, A. 2002. Apoptosis in diabetic neuropathy. International review of neurobiology. 50:145-159.
Trounce, I., E. Byrne, and S. Marzuki. 1989. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet. 1:637-639.
Vendelbo, M.H., and K.S. Nair. 2011. Mitochondrial longevity pathways. Biochimica et biophysica acta. 1813:634-644.
Walford, R.L. 1969. [Immunologic aspects of aging]. Klinische Wochenschrift. 47:599-605.
Wallace, D.C. 1994. Mitochondrial DNA sequence variation in human evolution and disease. Proceedings of the National Academy of Sciences of the United States of America. 91:8739-8746.
Wallace, D.C. 1999. Mitochondrial diseases in man and mouse. Science. 283:1482-1488.
Wallace, D.C. 2001. A mitochondrial paradigm for degenerative diseases and ageing. Novartis Foundation symposium. 235:247-263; discussion 263-246.
Wang, X., B. Su, S.L. Siedlak, P.I. Moreira, H. Fujioka, Y. Wang, G. Casadesus, and X. Zhu. 2008. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America. 105:19318-19323.
Wei, Y.H. 1998. Oxidative stress and mitochondrial DNA mutations in human aging. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine. 217:53-63.
Westermann, B. 2012. Bioenergetic role of mitochondrial fusion and fission. Biochimica et biophysica acta. 1817:1833-1838.
Wong, E.D., J.A. Wagner, S.W. Gorsich, J.M. McCaffery, J.M. Shaw, and J. Nunnari. 2000. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. The Journal of cell biology. 151:341-352.
Yen, T.C., Y.S. Chen, K.L. King, S.H. Yeh, and Y.H. Wei. 1989. Liver mitochondrial respiratory functions decline with age. Biochemical and biophysical research communications. 165:944-1003.
Yoon, Y., E.W. Krueger, B.J. Oswald, and M.A. McNiven. 2003. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Molecular and cellular biology. 23:5409-5420.
Yoon, Y.S., D.S. Yoon, I.K. Lim, S.H. Yoon, H.Y. Chung, M. Rojo, F. Malka, M.J. Jou, J.C. Martinou, and G. Yoon. 2006. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. Journal of cellular physiology. 209:468-480.
Yu, T., S.S. Sheu, J.L. Robotham, and Y. Yoon. 2008. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular research. 79:341-351.
Zeviani, M., C.T. Moraes, S. DiMauro, H. Nakase, E. Bonilla, E.A. Schon, and L.P. Rowland. 1988. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology. 38:1339-1346.
Zuchner, S., I.V. Mersiyanova, M. Muglia, N. Bissar-Tadmouri, J. Rochelle, E.L. Dadali, M. Zappia, E. Nelis, A. Patitucci, J. Senderek, Y. Parman, O. Evgrafov, P.D. Jonghe, Y. Takahashi, S. Tsuji, M.A. Pericak-Vance, A. Quattrone, E. Battaloglu, A.V. Polyakov, V. Timmerman, J.M. Schroder, and J.M. Vance. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature genetics. 36:449-451.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *