帳號:guest(3.149.251.138)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江欣璉
論文名稱(中文):第十型葡萄糖運送子在氧化壓力與胰島素敏感性的角色
論文名稱(外文):The role of glucose transporter 10 and in oxidative stress and insulin sensitivity
指導教授(中文):李宜靜
徐瑞洲
指導教授(外文):Lee, Yi-Ching
Hsu, Jui-Chou
口試委員(中文):高茂傑
蔡孟勳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:100080514
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:45
中文關鍵詞:脂肪細胞胰島素信號途徑氧化壓力抗氧化劑第二型糖尿病胰島素抵抗第十型葡萄糖運送子
外文關鍵詞:adipocytesinsulin signal pathwayoxidative stressantioxidantType 2 diabetes mellitusinsulin resistanceglucose transporter 10
相關次數:
  • 推薦推薦:0
  • 點閱點閱:360
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
第二型糖尿病是屬於一種胰島素抵抗的代謝異常。活性氧類會抑制胰島素調控的回應,且導致胰島素抵抗。第十型葡萄糖轉運子為從SLC2A10 gene 轉譯的蛋白質,其為促進葡萄糖轉運蛋白家族第三類的成員。在本實驗室,先前研究發現第十型葡萄糖轉運子在脂肪細胞中,第十型葡萄糖轉運子經過胰島素刺激,會位於粒腺體,而無胰島素刺激則位於高基氏體。
在脂肪細胞中,第十型葡萄糖轉運子被證實做為粒腺體的脫氫抗壞血酸(DHA)的轉運子。脫氫抗壞血酸為抗壞血酸的氧化態。而抗壞血酸為俗稱的維他命C,可以抵抗氧化壓力和誘使活性氧類下降。因此當第十型葡萄糖轉運子經過胰島素刺激,移動到粒腺體,可減少粒腺體內的活性氧類。胰島素抵抗是一種細胞無法回應胰島素的症狀。先前研究已知,提高活性氧類的程度可以抑制胰島素訊息傳遞路徑和葡萄糖攝取。
因此我們將比較第十型葡萄糖轉運子在脂肪細胞中,有關於胰島素訊息傳遞路徑、葡萄糖攝取、以及活性氧清除者的所扮演的角色。
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by insulin resistance. Reactive oxygen species (ROS) can suppress the insulin response and contribute to insulin resistance in adipocyte. Glucose transporter 10 (GLUT10) encoded by the SLC2A10 gene is a member of the class III facilitative glucose transporter family.
In our lab, we found GLUT10 was localized in the mitochondria after insulin-stimulated in adipocyte. In the unstimulated adipocyte, GLUT10 was localized in the Golgi apparatus. GLUT10 is confirmed as a DHA transporter in mitochondria in aortic smooth muscle cell (A10) and insulin-stimulated adipocytes (3T3-L1). DHA is the oxidized form of ascorbic acid. Ascorbic acid (also called vitamin C) can against oxidative stress and induce to decreasing of ROS level in cell. When the GLUT10 targeted to mitochondria by insulin-stimulated, it can reduce ROS level. The cells fail to respond to insulin in insulin resistance. Previous studies have shown that elevated ROS level in mitochondria can inhibit insulin signal pathway and glucose uptake. Therefore, we will understand the role of GLUT10 in insulin signal pathway, glucose uptake and ROS scavenger in adipocyte.
中文摘要
Abstract
誌謝辭
List of contents
Abbreviations
I. Introduction
1. Type 2 diabetes mellitus associated with Glucose transporter 10 ……...P.1
2. The DHA transport role of GLUT10 in mitochondria is associated with oxidative stress in muscle cells and adipocytes …………………………..P.2
3. Specific aims ……………………………………………………………...P.4
II. Materials and methods
1. Cell Culture ……………………………………………………….….…...P.5
2. Adipogenesis ………………………………...……………….……..…… P.5
3. Oil-Red-O Staining ……...………………...……………….……………P.6
4. Transfection ………………………………………………………….…...P.7
5. Induction of Oxidative Stress and Insulin Stimulation by high glucose treatment ………………………………………………………….…........P.8
6. Primer Design …………………………………………………….…........P.9
7. Isolation of RNA ……………………………………………….…............P.9
8. Reverse transcription amplification reaction (RT-PCR) ……….…..........P.11
9. Real-time polymerase chain reaction (real time PCR) ...…….….............P.11
10. Statistical analysis ………………………………………………..........P.12
III. Result
1. Determine the role of GLUT10 in adipocytes under conditions of high glucose The differentiation of adipocytes….…………….…....................P.13
1.1 Expression of three antioxidant genes under high glucose condition
1.2 The gene expression of JNK-1 is reduced upon insulin stimulation
1.3 The transcription levels of genes involved in the insulin signal-transduction pathway under high glucose conditions in adipocytes
1.4 GLUT4 transcription level was not affected by translocation of GLUT10 to mitochondria during prolonged oxidative stress
2. Comparison of gene expression patterns between control and GLUT10 over-expressing adipocytes ………………………………………..…….P.18
2.1 Gene expression of catalase, SOD-1, and SOD-2 in GLUT10 over-expressing adipocytes
2.2 The gene expression of JNK-1 in GLUT10 over-expressing adipocytes
2.3 The transcription level of GLUT4 and of genes involved in the insulin-signaling pathway in GLUT10 over-expressing adipocytes
3. GLUT10 gene expression decreases following insulin stimulation …….P.21
Ⅳ. Discussion
1. Mitochondrial GLUT10 modulates antioxidants and JNK-1 under oxidative stress conditions ………………………………………………………...P.22
2. GLUT10 mitochondrial function affects GLUT4 and molecules involved in the insulin-signaling pathway under oxidative stress conditions …...…..P.24
3. GLUT10 over-expression modulates the gene expression of anti-oxidant molecules and molecules of the insulin-signaling pathway in adipocytes ……………………………………………………………….P.26
4. The regulation of GLUT10 expression in the presence of insulin or high glucose …………………………………………….…………...…......P.29
Reference …………………………………………….………………………….....P.30
Table …………………………………………….…………………………............P.35
Figures ………………………………………….…….……………………............P.37
Reference
1. International Diabetes Federation. Medicine on the Net, 2012. 18(9): p. 20-20.
2. Cheng, Z., Y. Tseng, and M.F. White, Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab, 2010. 21(10): p. 589-98.
3. Tanti, J.F., et al., Alteration in insulin action: role of IRS-1 serine phosphorylation in the retroregulation of insulin signalling. Ann Endocrinol (Paris), 2004. 65(1): p. 43-8.
4. Shao, J., et al., Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J Endocrinol, 2000. 167(1): p. 107-15.
5. Quon, M.J., et al., Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol, 1995. 15(10): p. 5403-11.
6. Quon, M.J., et al., Tyrosine kinase-deficient mutant human insulin receptors (Met1153-->Ile) overexpressed in transfected rat adipose cells fail to mediate translocation of epitope-tagged GLUT4. Proc Natl Acad Sci U S A, 1994. 91(12): p. 5587-91.
7. McVie-Wylie, A.J., D.R. Lamson, and Y.T. Chen, Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics, 2001. 72(1): p. 113-7.
8. Dawson, P.A., et al., Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Mol Genet Metab, 2001. 74(1-2): p. 186-99.
9. Shaw, J.T., et al., Novel susceptibility gene for late-onset NIDDM is localized to human chromosome 12q. Diabetes, 1998. 47(11): p. 1793-6.
10. Mohlke, K.L., et al., Evaluation of SLC2A10 (GLUT10) as a candidate gene for type 2 diabetes and related traits in Finns. Mol Genet Metab, 2005. 85(4): p. 323-7.
11. Bento, J.L., et al., Genetic analysis of the GLUT10 glucose transporter (SLC2A10) polymorphisms in Caucasian American type 2 diabetes. BMC Med Genet, 2005. 6: p. 42.
12. Rose, C.S., et al., Studies of relationships between the GLUT10 Ala206Thr polymorphism and impaired insulin secretion. Diabet Med, 2005. 22(7): p. 946-9.
13. Lin, W.H., et al., Association study of genetic polymorphisms of SLC2A10 gene and type 2 diabetes in the Taiwanese population. Diabetologia, 2006. 49(6): p. 1214-21.
14. Lee, Y.C., et al., Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet, 2010. 19(19): p. 3721-33.
15. Kim, J.A., Y. Wei, and J.R. Sowers, Role of mitochondrial dysfunction in insulin resistance. Circ Res, 2008. 102(4): p. 401-14.
16. Rice, K.M., G.E. Lienhard, and C.W. Garner, Regulation of the expression of pp160, a putative insulin receptor signal protein, by insulin, dexamethasone, and 1-methyl-3-isobutylxanthine in 3T3-L1 adipocytes. J Biol Chem, 1992. 267(14): p. 10163-7.
17. Gao, C.L., et al., Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol, 2010. 320(1-2): p. 25-33.
18. Wang, C.H., et al., Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J, 2013. 280(4): p. 1039-50.
19. Tiganis, T., Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci, 2011. 32(2): p. 82-9.
20. Chomczynski, P. and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987. 162(1): p. 156-9.
21. Davis, J.E., et al., The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Horm Metab Res, 2009. 41(7): p. 523-30.
22. Aguirre, V., et al., The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem, 2000. 275(12): p. 9047-54.
23. Rice, K.M., M.A. Turnbow, and C.W. Garner, Insulin stimulates the degradation of IRS-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun, 1993. 190(3): p. 961-7.
24. Renstrom, F., J. Buren, and J.W. Eriksson, Insulin receptor substrates-1 and -2 are both depleted but via different mechanisms after down-regulation of glucose transport in rat adipocytes. Endocrinology, 2005. 146(7): p. 3044-51.
25. Cong, L.N., et al., Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol, 1997. 11(13): p. 1881-90.
26. Valverde, A.M., C.R. Kahn, and M. Benito, Insulin signaling in insulin receptor substrate (IRS)-1-deficient brown adipocytes: requirement of IRS-1 for lipid synthesis. Diabetes, 1999. 48(11): p. 2122-31.
27. Carvalho, E., et al., Impaired phosphorylation and insulin-stimulated translocation to the plasma membrane of protein kinase B/Akt in adipocytes from Type II diabetic subjects. Diabetologia, 2000. 43(9): p. 1107-15.
28. Ezaki, O., N. Fukuda, and H. Itakura, Role of two types of glucose transporters in enlarged adipocytes from aged obese rats. Diabetes, 1990. 39(12): p. 1543-9.
29. Rosen, E.D. and B.M. Spiegelman, Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006. 444(7121): p. 847-53.
30. Zhai, L., S.W. Ballinger, and J.L. Messina, Role of reactive oxygen species in injury-induced insulin resistance. Mol Endocrinol, 2011. 25(3): p. 492-502.
31. Kohjima, M., et al., Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med, 2007. 20(3): p. 351-8.
32. Franco, A.A., R.S. Odom, and T.A. Rando, Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic Biol Med, 1999. 27(9-10): p. 1122-32.
33. Araki, S., et al., N-acetylcysteine attenuates TNF-alpha induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes. Life Sci, 2006. 79(25): p. 2405-12.
34. Lo, Y.Y., J.M. Wong, and T.F. Cruz, Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem, 1996. 271(26): p. 15703-7.
35. Hatanaka, Y., et al., Reactive oxygen species enhances the induction of inducible nitric oxide synthase by sphingomyelinase in RAW264.7 cells. Biochim Biophys Acta, 1998. 1393(1): p. 203-10.
36. Inanami, O., et al., Hydrogen peroxide-induced activation of SAPK/JNK regulated by phosphatidylinositol 3-kinase in Chinese hamster V79 cells. Antioxid Redox Signal, 1999. 1(1): p. 113-21.
37. Chambers, J.W. and P.V. LoGrasso, Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem, 2011. 286(18): p. 16052-62.
38. Nomura, K., et al., An ASK1-p38 signalling pathway mediates hydrogen peroxide-induced toxicity in NG108-15 neuronal cells. Neurosci Lett, 2013. 549: p. 163-7.
39. Rotter, V., I. Nagaev, and U. Smith, Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem, 2003. 278(46): p. 45777-84.
40. Zhou, H., J. Zhao, and X. Zhang, Inhibition of uncoupling protein 2 by genipin reduces insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Arch Biochem Biophys, 2009. 486(1): p. 88-93.
41. Mahadev, K., et al., Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem, 2001. 276(52): p. 48662-9.
42. Li, Y., et al., Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes, 2008. 57(4): p. 817-27.
43. Lin, L., et al., Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am J Physiol Endocrinol Metab, 2012. 302(12): p. E1550-9.
44. Turnbow, M.A., et al., Dexamethasone down-regulation of insulin receptor substrate-1 in 3T3-L1 adipocytes. J Biol Chem, 1994. 269(4): p. 2516-20.
45. Buren, J., et al., High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol, 2003. 148(1): p. 157-67.
46. Bai, L., et al., Dissecting Multiple Steps of GLUT4 Trafficking and Identifying the Sites of Insulin Action. Cell metabolism, 2007. 5(1): p. 47-57.
47. Flores-Riveros, J.R., et al., Insulin down-regulates expression of the insulin-responsive glucose transporter (GLUT4) gene: effects on transcription and mRNA turnover. Proc Natl Acad Sci U S A, 1993. 90(2): p. 512-6.
48. Ma, J., et al., Prolonged Insulin Stimulation Downregulates GLUT4 Through Oxidative Stress-Mediated Retromer Inhibition by a Protein Kinase CK2-Dependent Mechanism in 3T3-L1 Adipocytes. J Biol Chem, 2013.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *