|
Reference 1. International Diabetes Federation. Medicine on the Net, 2012. 18(9): p. 20-20. 2. Cheng, Z., Y. Tseng, and M.F. White, Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab, 2010. 21(10): p. 589-98. 3. Tanti, J.F., et al., Alteration in insulin action: role of IRS-1 serine phosphorylation in the retroregulation of insulin signalling. Ann Endocrinol (Paris), 2004. 65(1): p. 43-8. 4. Shao, J., et al., Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J Endocrinol, 2000. 167(1): p. 107-15. 5. Quon, M.J., et al., Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol, 1995. 15(10): p. 5403-11. 6. Quon, M.J., et al., Tyrosine kinase-deficient mutant human insulin receptors (Met1153-->Ile) overexpressed in transfected rat adipose cells fail to mediate translocation of epitope-tagged GLUT4. Proc Natl Acad Sci U S A, 1994. 91(12): p. 5587-91. 7. McVie-Wylie, A.J., D.R. Lamson, and Y.T. Chen, Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics, 2001. 72(1): p. 113-7. 8. Dawson, P.A., et al., Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Mol Genet Metab, 2001. 74(1-2): p. 186-99. 9. Shaw, J.T., et al., Novel susceptibility gene for late-onset NIDDM is localized to human chromosome 12q. Diabetes, 1998. 47(11): p. 1793-6. 10. Mohlke, K.L., et al., Evaluation of SLC2A10 (GLUT10) as a candidate gene for type 2 diabetes and related traits in Finns. Mol Genet Metab, 2005. 85(4): p. 323-7. 11. Bento, J.L., et al., Genetic analysis of the GLUT10 glucose transporter (SLC2A10) polymorphisms in Caucasian American type 2 diabetes. BMC Med Genet, 2005. 6: p. 42. 12. Rose, C.S., et al., Studies of relationships between the GLUT10 Ala206Thr polymorphism and impaired insulin secretion. Diabet Med, 2005. 22(7): p. 946-9. 13. Lin, W.H., et al., Association study of genetic polymorphisms of SLC2A10 gene and type 2 diabetes in the Taiwanese population. Diabetologia, 2006. 49(6): p. 1214-21. 14. Lee, Y.C., et al., Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet, 2010. 19(19): p. 3721-33. 15. Kim, J.A., Y. Wei, and J.R. Sowers, Role of mitochondrial dysfunction in insulin resistance. Circ Res, 2008. 102(4): p. 401-14. 16. Rice, K.M., G.E. Lienhard, and C.W. Garner, Regulation of the expression of pp160, a putative insulin receptor signal protein, by insulin, dexamethasone, and 1-methyl-3-isobutylxanthine in 3T3-L1 adipocytes. J Biol Chem, 1992. 267(14): p. 10163-7. 17. Gao, C.L., et al., Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol, 2010. 320(1-2): p. 25-33. 18. Wang, C.H., et al., Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J, 2013. 280(4): p. 1039-50. 19. Tiganis, T., Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci, 2011. 32(2): p. 82-9. 20. Chomczynski, P. and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987. 162(1): p. 156-9. 21. Davis, J.E., et al., The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Horm Metab Res, 2009. 41(7): p. 523-30. 22. Aguirre, V., et al., The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem, 2000. 275(12): p. 9047-54. 23. Rice, K.M., M.A. Turnbow, and C.W. Garner, Insulin stimulates the degradation of IRS-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun, 1993. 190(3): p. 961-7. 24. Renstrom, F., J. Buren, and J.W. Eriksson, Insulin receptor substrates-1 and -2 are both depleted but via different mechanisms after down-regulation of glucose transport in rat adipocytes. Endocrinology, 2005. 146(7): p. 3044-51. 25. Cong, L.N., et al., Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol, 1997. 11(13): p. 1881-90. 26. Valverde, A.M., C.R. Kahn, and M. Benito, Insulin signaling in insulin receptor substrate (IRS)-1-deficient brown adipocytes: requirement of IRS-1 for lipid synthesis. Diabetes, 1999. 48(11): p. 2122-31. 27. Carvalho, E., et al., Impaired phosphorylation and insulin-stimulated translocation to the plasma membrane of protein kinase B/Akt in adipocytes from Type II diabetic subjects. Diabetologia, 2000. 43(9): p. 1107-15. 28. Ezaki, O., N. Fukuda, and H. Itakura, Role of two types of glucose transporters in enlarged adipocytes from aged obese rats. Diabetes, 1990. 39(12): p. 1543-9. 29. Rosen, E.D. and B.M. Spiegelman, Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006. 444(7121): p. 847-53. 30. Zhai, L., S.W. Ballinger, and J.L. Messina, Role of reactive oxygen species in injury-induced insulin resistance. Mol Endocrinol, 2011. 25(3): p. 492-502. 31. Kohjima, M., et al., Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med, 2007. 20(3): p. 351-8. 32. Franco, A.A., R.S. Odom, and T.A. Rando, Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic Biol Med, 1999. 27(9-10): p. 1122-32. 33. Araki, S., et al., N-acetylcysteine attenuates TNF-alpha induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes. Life Sci, 2006. 79(25): p. 2405-12. 34. Lo, Y.Y., J.M. Wong, and T.F. Cruz, Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem, 1996. 271(26): p. 15703-7. 35. Hatanaka, Y., et al., Reactive oxygen species enhances the induction of inducible nitric oxide synthase by sphingomyelinase in RAW264.7 cells. Biochim Biophys Acta, 1998. 1393(1): p. 203-10. 36. Inanami, O., et al., Hydrogen peroxide-induced activation of SAPK/JNK regulated by phosphatidylinositol 3-kinase in Chinese hamster V79 cells. Antioxid Redox Signal, 1999. 1(1): p. 113-21. 37. Chambers, J.W. and P.V. LoGrasso, Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem, 2011. 286(18): p. 16052-62. 38. Nomura, K., et al., An ASK1-p38 signalling pathway mediates hydrogen peroxide-induced toxicity in NG108-15 neuronal cells. Neurosci Lett, 2013. 549: p. 163-7. 39. Rotter, V., I. Nagaev, and U. Smith, Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem, 2003. 278(46): p. 45777-84. 40. Zhou, H., J. Zhao, and X. Zhang, Inhibition of uncoupling protein 2 by genipin reduces insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Arch Biochem Biophys, 2009. 486(1): p. 88-93. 41. Mahadev, K., et al., Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem, 2001. 276(52): p. 48662-9. 42. Li, Y., et al., Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes, 2008. 57(4): p. 817-27. 43. Lin, L., et al., Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am J Physiol Endocrinol Metab, 2012. 302(12): p. E1550-9. 44. Turnbow, M.A., et al., Dexamethasone down-regulation of insulin receptor substrate-1 in 3T3-L1 adipocytes. J Biol Chem, 1994. 269(4): p. 2516-20. 45. Buren, J., et al., High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol, 2003. 148(1): p. 157-67. 46. Bai, L., et al., Dissecting Multiple Steps of GLUT4 Trafficking and Identifying the Sites of Insulin Action. Cell metabolism, 2007. 5(1): p. 47-57. 47. Flores-Riveros, J.R., et al., Insulin down-regulates expression of the insulin-responsive glucose transporter (GLUT4) gene: effects on transcription and mRNA turnover. Proc Natl Acad Sci U S A, 1993. 90(2): p. 512-6. 48. Ma, J., et al., Prolonged Insulin Stimulation Downregulates GLUT4 Through Oxidative Stress-Mediated Retromer Inhibition by a Protein Kinase CK2-Dependent Mechanism in 3T3-L1 Adipocytes. J Biol Chem, 2013.
|