帳號:guest(3.137.184.90)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賈凱帆
作者(外文):Jia, Kai-Fan
論文名稱(中文):從結構及正反應酵素動力學的角度去分析胃幽門螺旋桿菌中正常和突變的磷酸泛酸醯基乙胺腺苷轉移酶與受質結合的情形來做藥物設計
論文名稱(外文):Structural and forward kinetic analysis of substrate binding to the phosphopantetheine adenylyltransferase and its mutants from Helicobacter pylori offers the concept for drug design
指導教授(中文):殷献生
指導教授(外文):Yin, Hsien-Sheng
口試委員(中文):孫玉珠
呂平江
蕭傳鐙
口試委員(外文):Yuh-Ju Sun
Ping-Chiang Lyu
Chwan-Deng Hsiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080512
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:藥物設計
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胃幽門螺旋桿菌是ㄧ種微需氧的革蘭氏陰性菌,會造成胃潰瘍社甚至是胃癌,輔酶A對生物體來說是ㄧ個重要的輔因子,因為他參予了許多重要的代謝反應,而磷酸泛酸醯基乙胺腺苷轉移酶在輔酶A生合成途徑中是速率限制步驟,因此我們選擇磷酸泛酸醯基乙胺腺苷轉移酶作為我們研究的目標蛋白。
為了瞭解磷酸泛酸醯基乙胺腺苷轉移酶催化的過程,我們解出了磷酸泛酸醯基乙胺腺苷轉移酶與其配體結合的復合體結構,包括與三磷酸腺苷的,與磷酸泛酸硫氫乙胺的,以及與輔酶A的,並與沒結合配體的磷酸泛酸醯基乙胺腺苷轉移酶做比較,來找出在催化過程中,哪些重要的胺基酸與配體有交互作用。
我們也隨機突變了胃幽門桿菌基因序列上的基因,並發現其中一種較為特殊的突變株 : I4V/N76Y,它不像一般的磷酸泛酸醯基乙胺腺苷轉移酶為同源六聚體結構,I4V/N76Y反而是ㄧ種有區域相互結合特性的四聚體結構。我們也比較了此突變型與正常型光譜學,酵素動力學集結構上的差異。
另外,我們利用了以結構為基礎的高通量篩選技術篩選出一些化合物,並找出其中可以抑制磷酸泛酸醯基乙胺腺苷轉移酶活性且有潛力成為胃幽門螺旋菌抑制劑的化合物,這可能會對未來在對抗胃幽門螺旋菌的藥物設計上提供了一些有價值的訊息。
Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that causes chronic gastritis and stomach cancer. Coenzyme A (CoA) is an essential cofactor in all living organisms, which participates in numerous metabolic pathways. For this reason, we choose phosphopantetheine adenylytransferase (PPAT) as a target protein in our research, which is the rate-limiting enzyme in CoA biosynthesis.
To investigate the PPAT catalytic mechanism, complex structures of H. pylori PPAT with other ligands, including ATP, phosphopantetheine, and CoA have been determined. Structural comparisons between apo-form PPAT and complex form have been performed and identified some critical residues interacting with these ligands.
We randomly mutated the residues in the Helicobacter pylori PPAT sequence and described the crystal structure of one of these mutants (I4V/N76Y). Unlike other PPATs, which are homohexamers, I4V/N76Y is a domain-swapped homotetramer. These two structures between wild-type PPAT and I4V/N76Y PPAT have been characterized by circular dichroism, enzyme kinetics, and crystallography approaches.
In addition, structure based high-throughput screen has been employed and some compounds have been utilized to examine the potent inhibitor to inhibit H. pylori PPAT activity. This may provide valuable information for drug design to against the H. pylori infection in the future.
Abstract I
中文摘要 II
Content III
List of figures VI
List of tables IX
1. Introduction 1
1.1 Helicobacter pylori 1
1.2 Coenzyme A 2
1.3 Phosphopantetheine adenylyltransferase 3
1.4 Domain swapping – I4V/N76Y 5
1.5 Discover novel inhibitors 6
1.6 Aim of the study 7
2. Materials and methods 9
2.1 Materials 9
2.2 Over expression of H. pylori 10
2.3 Purification of H. pylori and its mutants 11
2.4 H. pylori PPAT crystallization 12
2.5 X-ray diffraction data collection 12
2.6 Molecular replacement and crystallographic refinement 13
2.7 Circular dichroism spectroscopy 14
2.8 Pyrophosphate assay 15
2.9 Kinetic analysis of forward reaction 16
2.10 Analytical ultracentrifuge 17
2.11 UV-visible absorption spectroscopy 17
2.12 Virtual high-throughput screening (vHTS) 18
2.13 Quantitative H. pylori inhibition assay 18
2.14 Steady-state kinetic inhibition assay using D-amethopterin 19
2.15 Isothermal titration calorimetry (ITC) 20
3. Result and discussion 21
3.1 Protein purification 21
3.2 Structural insight into substrate binding mode of wild-type HpPPAT 21
3.2.1 Crystal structure of apo-form PPAT and complex form PPAT 21
3.2.2 ATP binding to PPAT 22
3.2.3 Ppant binding to PPAT…………………………………………………23
3.2.4 HpPPAT catalytic process 23
3.3 I4V/N76Y-domain swapping conformation 24
3.3.1 Crystal structure of I4V/N756Y-CoA and I4V/N76Y-ATP complex 24
3.3.2 Circular dichroism spectroscopy 26
3.3.3 Kinetic analysis of I4V/N76Y 26
3.3.4 Asparagine 76 mutants 27

3.4 Discover a novel inhibitors of H. pylori PPAT 29
3.4.1 Virtual high-throughput screening 29
3.4.2 H. pylori inhibition assay 30
3.4.3 Steady-state inhibition assay 31
3.4.4 ITC 31
3.4.5 Binding model 32
4. Conclusion 34
5. Figures 36
6. Tables 71
7. Reference 77

1. Blaser MJ. Indigenous microbes and the ecology of human diseases. EMBO reports Vol. 7 (2006) 956-960.

2. Linda MB. Helicobacter pylori: Epidemiology and routes of transmission. Epidemiol Rev Vol. 22 (2014) 283-297.

3. Manuel RA & Emad ME. Host-Bacterial Interactions in Helicobacter pylori Infection. Gastroenterology Vol. 134 (2008) 306-323.

4. Bauerfeind P, Garner R, Dunn BE & Mobley HLT. Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut Vol. 40 (1997) 25-30.

5. Martin JB & John CA. Helicobacter pylori persistence: biology and disease. Science in medicine Vol. 113 (2004) 321-333.

6. Mitchell LS & David AP. Control of Gastric Acid Secretion in Health and Disease. Gastroenterology Vol. 134 (2008) 1842-1860.

7. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon ATR, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM & Kuipers EJ. Management of Helicobacter pylori infection the Maastricht IV/ Florence Consensus Report. Gut Vol. 61 (2012) 646-664.

8. Graham DY & Shiotani A. New concepts of resistance in the treatment of Helicobacter pylori infections. Gastroenterology & hepatology Vol. 5 (2008) 321-331.

9. Begley TP, Kinsland C & Strauss E. Biosynthesis coenzyme in bacteria vitam horm-advances res applications.Vol.61 (2001) 157-171.

10. Geerlof A, Lewendon A & William V. Purification and characterization of Phosphopantetheine adenylyltransferase from Escherichia coli. J. Biol. Chem Vol. 274 (1999) 27105-27111.

11. Bork P, Holm L, Koonin EV & Sander C. The cytidylyltransferase superfamilyidentification of the nucleotide-binding site and fold prediction, Proteins 22 (1995) 259–266.

12. Tina Izard. The Crystal Structures of Phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme's catalytic mechanism. J. Mol. Biol Vol. 315 (2002) 487-495.

13. Izard T & Geerlof A. The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity. EMBO Journal Vol.18 (1999) 2021-2030.

14. Suzuki T, Abiko Y & Shimizu M. Dephospho-CoA pyrophosphorylase and dephospho-CoA kinase as a possible bifunctional enzyme complex. The journal of Biochemistry Vol. 62 (1967) 642-649.

15. Izard T. A Novel adenylate binding Site Confers phosphopantetheine adenylyltransferase interactions with Coenzyme A. Journal of bacteriology Vol. 185 (2003) 4074-4080.

16. Wubben TJ & Mesecar AD. Kinetic, thermodynamic, and structural insight into the mechanism of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis. J. Mol. Biol Vol.404 (2010) 202–219.

17. Timofeev VI, Smirnova EA, Chupova LA, Esipov RS, & Kuranova IP. Preparation of the Crystal Complex of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis with Coenzyme A and investigation of its three-dimensional structure at 2.1-Å resolution. Crystallography Reports Vol. 55 (2010) 1050-1059.

18. Yanshun L & Eisenberg D. 3D domain swapping: As domains continue to swap. Protein Science vol. 11 (2002) 1285-1299.

19. Mirbagheri SA, Hasibi M, Abouzari M & Rashidi A. Triple, standard quadruple and ampicillin-sulbactam-based quadruple therapies for H pylori eradication: A comparative three-armed randomized clinical trial. World J Gastroenterol vol.12 (2006) 4888-4891.

20. Minakari M, Jazi AHD, Shavakhi A, Moghareabed N & Fatahi F. A Randomized Controlled Trial: Efficacy and Safety of Azithromycin, Ofloxacin, Bismuth, and Omeprazole Compared with Amoxicillin, Clarithromycin, Bismuth, and Omeprazole as Second-Line Therapy in Patients with Helicobacter pylori Infection. Helicobacter vol.15 (2010) 154-159.

21. Graham DY & Shiotani A. New concepts of resistance in the treatment of Helicobacter pylori infections. Nat Clin Practice Gastroenterol Hepatol vol.5 (2008) 321-331.

22. Zhao L, Allanson NM, Thomson SP, Maclean JK & Barker JJ et al. Inhibitors of phosphopantetheine adenylyltransferase. Eur J Med Chem vol.38 (2003) 345-349.

23. Sassetti CM, Boyd DH & Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Molecular microbiology Vol. 48 (2003) 77–84.

24. Gerdes SY, Scholle MD, D’Souza M, Bernal A & Baev MV et al. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol vol.184 (2002) 4555-4572.

25. Cheng CS, Chen CH, Luo YC, Chen WT, Chang SY, Lyu PC, Kao MC & Yin HS. Crystal structure and biophysical characterisation of Helicobacter pylori phosphopantetheine adenylyltransferase. Biochemical and Biophysical Research Communications Vol. 408 (2011) 356–361.

26. Otwinowski Z & Minor Y. Processing of X-ray diffraction data collected in oscillation mode." Macromolecular Crystallography Vol.276 (1997) 307-326.

27. Bailey S, The Ccp4 Suite - programs for protein crystallography. Acta crystallographica Section D-biological crystallography Vol. 50 (1994) 760-763.

28. Alexei V & Alexei T. Molrep: an automated program for molecular replacement. Journal of Applied Crystallography Vol. 30 (1997) 1022-1025.

29. Vagin AA, Steiner AA, Lebedev AA, Potterton L, McNicholas S, Long F & Murshudov N. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Biological Crystallography Vol. 60 (2004) 2184-2195.

30. Emsley P & Cowtan K. Coot: model-building tools for molecular graphics. Biological Crystallography Vol. 60 (2004) 2126-2132.

31. DeLano, WL and Lam JW. "PyMOL: A communications tool for computational models." Abstracts of Papers of the American Chemical Society Vol. 230 (2005) 1371-1372.

32. Cheng CS, Chen MN, Lai YT. Chen J, Lin KF, Liu YJ & Lyu PC. Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins Vol. 70 (2008) 695–706.

33. MARTIN RW. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Biochemistry Vol. 89 (1992)4884-4887.

34. Kou SC, Cherayil BJ, Min W, English BP, & Xie XS. Single-molecule Michaelis-Menten equations. J. Phys. Chem Vol. 109 (2005) 19068-19081.

35. Lebolitz J, LEWIS MS & shuck P. Modern analytical ultracentrifugation in protein science: A tutorial review. Protein Science vol. 11 (2002) 2068-2079.

36. Cheng CS, Lu WS, Tu IF, Lyu, PC. & Yin, H.-S. Comparative analysis of receptor binding by chicken and human interleukin-1β. Journal of Molecular Modeling Vol.17 (2011) 1283–1294.

37. Daniel WU, Robertson CHL, Brooks III & Vieth M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm. Journal of Computational Chemistry Vol. 24 (2003) 1549-1561.

38. Venkatachalam CM, Jiang X, Oldfield T & Waldman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics and Modelling Vol. 21 (2003) 289–307.

39. MAPLE JR, HWANG MJ, Jalkanen KJ, Stockfisch TP & Lagler AT. Derivation of class II force fields: V. Quantum force field for amides, peptides, and related compounds. Journal of Computational chemistry Vol. 19 (1998) 430-458.

40. Willett P, Barnard JM & Downs GM. Chemical similarity searching. J. Chem Vol. 38 (1998) 983-996.

41. Muegge I & Yvonne C. Martin. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J. Med. Chem Vol. 42 (1999) 791-804.

42. Gehlhaarl DK, Verkhivkerl GM, Rejtol PA, Christopher J, Sherman I, Fogel DB, Fogel LJ & Freer ST. Mblecular recognition of the inhibitor AC-1343 by HIV-l protease: conformationally flexible docking by evolutionary programming. Chemistry & Biology Vol. 2 (1995) 317-324.

43. Wallace1 AC, Laskowski RA & Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering vol. 8 (1995) 127-134.

44. Miller1 JR, Thanabal V, Melnick MM, Lall M, Donovan1 C, Sarver RW, Lee DY, Ohren J & Emerson D. The use of biochemical and biophysical tools for triage of high-throughput screening hits – A case study with Escherichia coli phosphopantetheine adenylyltransferase. Chem Biol Drug Des Vol. 75 (2010) 444-454.

45. Cheng CS, Chen WT, Chen YW, Chen CH, Luo YC, Lyu PC & Yin HS. Substitution of asparagine 76 by a tyrosine residue induces domain swapping in Helicobacter pylori phosphopantetheine adenylyltransferase. Journal of Biomolecular Structure and Dynamics (2012) 1-15.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 幽門螺旋桿菌之腺核苷二磷酸七碳糖合成酶HP0858之表現質體建構與結構模擬
2. Crystallization and characterization studies of avian reovirus nonstructural protein μNS and σNS
3. 幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶結構與功能之研究
4. I.家禽里奧病毒感染細胞之蛋白質體學分析以鑑定參與病毒感染機制之可能蛋白質 II.外源性雞細胞素白細胞介素1β促進家禽里奧病毒對宿主細胞之感染
5. 雞細胞激素介白素-1 beta之高解析度結晶學結構顯示與人類介白素-1 beta在受體結合上的差異
6. 由結構與輔酶A的結合試驗比較幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的差異
7. 功能性上的研究幽門桿菌中正常和突變的磷酸泛酸醯基乙胺腺苷轉移酶,並比較其差異性
8. 由幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的正向活性試驗分析參與活化的重要胺基酸
9. Structural and reverse kinetics analysis of substrate binding to the phosphopantetheine adenylyltransferase and its mutants from Helicobacter pylori
10. I. 環形序列重組對雞之介白素-1乙型結構與功能的影響 II. 雞之介白素-1受體拮抗蛋白其結構與功能的分析
11. 家禽介白素-1β結構生物學特性與臨床應用及其對家禽里奧病毒感染宿主細胞之影響
12. 研究果蠅谷氨醯胺合成酶II的蛋白質結構及酵素動力學
13. Biological analysis and application of IL-1 family
14. 探討胺基末端和催化位點突變在果蠅谷氨酰胺合成酶II中的關鍵作用
15. 豬介白素-1之結構,功能,包覆性微顆粒以及作為豬生殖呼吸綜合症疫苗佐劑之應用
 
* *