帳號:guest(13.59.45.243)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊姿筠
作者(外文):Yang, Tzu-Yun
論文名稱(中文):幽門螺旋桿菌染色體分離蛋白Soj結構與功能之研究
論文名稱(外文):Structural and functional analysis of the chromosome segregation protein Soj from Helicobacter pylori
指導教授(中文):孫玉珠
指導教授(外文):Sun, Yuh-Ju
口試委員(中文):殷献生
蕭傳鐙
口試委員(外文):Yin, Hsien-sheng
Hsiao, Chwan-Deng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080504
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:42
中文關鍵詞:ParABSHpSojHelicobacter pyloriHp1139
相關次數:
  • 推薦推薦:0
  • 點閱點閱:108
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
Par系統在染色質分離、啟動孢子形成和對細胞週期的進行扮演重要的角色。ParABS系統由ParA、ParB兩個蛋白質和parS序列所組成。在胃幽門螺旋桿菌中, HpSoj(Hp1139)及HpSpo0J (Hp1138)這兩個蛋白質分別具有ParA及ParB的功能。HpSoj除了是一個ATPase之外,有關HpSoj的其他功能都還沒有被證實,例如在HpSoj的結構中,HpSoj如何與核酸結合和HpSoj如何與HpSpo0J作用是值得研究的。HpSoj經由大量表現並純化得到分子量約為29.2kDa。利用膠體過濾的實驗發現不論有沒有ATP, HpSoj 主要是以單體形態存在。而在電泳遲滯的實驗中,結果指出有ATP時,HpSoj除了對質體pUC19有較強的核酸結合能力,與小片段的parS DNA 也有結合的能力。我們以PEG3350為主沉澱劑培養得到HpSoj-ATP複合物的晶體,其X光繞射的解析度為1.9 Å,此晶體的空間群(space group)為P212121,晶格參數為a=48.1 Å, b=93.3 Å, c=110.9 Å,不對稱單元中具有兩個分子。我們嘗試利用HpSoj 的同源蛋白進行分子置換法(molecular replacement)計算HpSoj的結構相位角,以求得完整的立體結構,藉此了解HpSoj與DNA和Spo0J結合的位置,進而得知HpSoj的生物功能與其作用機制。
The partition system played important roles in segregation of chromosome, initiation of sporulation and progression of cell cycle. The ParABS system consisted of two proteins, ParA and ParB, and a parS sequence. In Helicobacter pylori, HpSoj (Hp1139) and HpSpo0J (Hp1138) was putative ParA and ParB proteins, respectively. Except HpSoj is an ATPase; there are few data to support other information. For example how Soj binds DNA and how Soj interacts with HpSpo0J in the HpSoj structure is worth investigating. HpSoj overexpressed and purified with a molecular weight of 29.2 kDa. Whether ATP is present or not, HpSoj was mainly a monomer by size exclusion chromatography. In Electrophoretic mobility shift assay showed that DNA binding activity of ATP-bound HpSoj with pUC19 was stronger than HpSoj. Furthermore, ATP-bound HpSoj had parS-binding activity. The HpSoj-ATP complex crystal was grown using PEG 3350 as a precipitant. Crystal structure of the HpSoj-ATP was determined at 1.9 Å. The HpSoj-ATP complex crystal belongs to P212121 space group with unit cell parameters a=48.1 Å, b=93.3 Å, c=110.9 Å, containing two molecules per asymmetry unit. We try to use the homologous protein as a search model to do the phase calculation by molecular replacement method, and the structure phase determination of HpSoj is still continuing. The three dimensional structure of HpSoj will help us to understand biological function and catalytic mechanisms of HpSoj.
中文摘要 Ⅱ
Abstract Ⅲ
謝誌 Ⅳ
Contents Ⅴ
Chapter 1 Introduction
1-1 Helicobacter pylori 1
1-2 The plasmid partitioning system 2
1-3 The chromosomally-encoded Par systems 3
1-4 The ParABS system 4
1-5 Background of Soj (ParA) 4

Chapter2 Materials and Methods
2-1 Bacterial strain, plasmid, enzyme, and kit reagent 6
2-2 Cloning of HpSoj 6
2-3 Protein Expression and Purification 7
2-4 Size Exclusion Chromatography 8
2-5 Agarose Electrophoretic Mobility Shift Assay 8
2-6 Acrylamide Electrophoretic Mobility Shift Assay 9
2-7 Crystallization 9
2-8 Data Collection and Space Group Determination 10
2-9 Self-Rotation Functions 11

Chapter3 Results and Discussion
3-1 Bioinformatics of HpSoj 12
3-2 Purification and Characterization of HpSoj 12
3-3 Size Exclusion Chromatography 13
3-4 DNA binding activity of HpSoj 14
3-5 Crystallization 15
3-6 Data Collection and Space Group Determination 16
3-7 Self-Rotation Functions 17

Chapter4 Conclusion 18
Figures 20
Tables 33
Reference 39












1. Marshall, B. J. & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-5.
2. Goodwin, C. S. & Armstrong, J. A. (1990). Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis 9, 1-13.
3. Goodwin, C. S., McCulloch, R. K., Armstrong, J. A. & Wee, S. H. (1985). Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol 19, 257-67.
4. Dunn, B. E., Cohen, H. & Blaser, M. J. (1997). Helicobacter pylori. Clin Microbiol Rev 10, 720-41.
5. Kuck, D., Kolmerer, B., Iking-Konert, C., Krammer, P. H., Stremmel, W. & Rudi, J. (2001). Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun 69, 5080-7.
6. Blaser, M. J., Perez-Perez, G. I., Kleanthous, H., Cover, T. L., Peek, R. M., Chyou, P. H., Stemmermann, G. N. & Nomura, A. (1995). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55, 2111-5.
7. Shibayama, K., Kamachi, K., Nagata, N., Yagi, T., Nada, T., Doi, Y., Shibata, N., Yokoyama, K., Yamane, K., Kato, H., Iinuma, Y. & Arakawa, Y. (2003). A novel apoptosis-inducing protein from Helicobacter pylori. Mol Microbiol 47, 443-51.
8. Dorer, M. S., Talarico, S. & Salama, N. R. (2009). Helicobacter pylori's unconventional role in health and disease. PLoS Pathog 5, e1000544.
9. Ebersbach, G. & Gerdes, K. (2005). Plasmid segregation mechanisms. Annu Rev Genet 39, 453-79.
10. Bignell, C. & Thomas, C. M. (2001). The bacterial ParA-ParB partitioning proteins. J Biotechnol 91, 1-34.
11. Schumacher, M. A. (2008). Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 412, 1-18.
12. Yamaichi, Y. & Niki, H. (2000). Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci U S A 97, 14656-61.
13. Lee, P. S. (2004). Effects of the conserved proteins,Soj(ParA) and Spo0J(ParB) on chromosome partitioning in Bacillus subtils.
14. Austin, S. & Nordstrom, K. (1990). Partition-mediated incompatibility of bacterial plasmids. Cell 60, 351-4.
15. Hiraga, S. (1992). Chromosome and plasmid partition in Escherichia coli. Annu Rev Biochem 61, 283-306.
16. Hiraga, S. (2000). Dynamic localization of bacterial and plasmid chromosomes. Annu Rev Genet 34, 21-59.
17. Gerdes, K., Moller-Jensen, J. & Bugge Jensen, R. (2000). Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37, 455-66.
18. Livny, J., Yamaichi, Y. & Waldor, M. K. (2007). Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J Bacteriol 189, 8693-703.
19. Murray, H. & Errington, J. (2008). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74-84.
20. Niki, H., Yamaichi, Y. & Hiraga, S. (2000). Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14, 212-23.
21. Davey, M. J. & Funnell, B. E. (1997). Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J Biol Chem 272, 15286-92.
22. Davis MA, M. K., Austin S. (1991). Biochemical activities of the P1 partition proteins. plasmid 25, 247–48.
23. Davis, M. A., Radnedge, L., Martin, K. A., Hayes, F., Youngren, B. & Austin, S. J. (1996). The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol Microbiol 21, 1029-36.
24. Hayes, F., Radnedge, L., Davis, M. A. & Austin, S. J. (1994). The homologous operons for P1 and P7 plasmid partition are autoregulated from dissimilar operator sites. Mol Microbiol 11, 249-60.
25. Quisel, J. D., Lin, D. C. & Grossman, A. D. (1999). Control of development by altered localization of a transcription factor in B. subtilis. Mol Cell 4, 665-72.
26. Easter, J., Jr. & Gober, J. W. (2002). ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell 10, 427-34,Figge, R. M., Easter, J. & Gober, J. W. (2003). Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47, 1225-37.
27. Bouet, J. Y. & Funnell, B. E. (1999). P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J 18, 1415-24.
28. Leonard, T. A., Butler, P. J. & Lowe, J. (2005). Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. EMBO J 24, 270-82.
29. Ireton, K., Gunther, N. W. t. & Grossman, A. D. (1994). spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol 176, 5320-9.
30. Quisel, J. D. & Grossman, A. D. (2000). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182, 3446-51.
31. Marston, A. L. & Errington, J. (1999). Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 4, 673-82.
32. Lin, D. C. & Grossman, A. D. (1998). Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675-85.
33. Gruber, S. & Errington, J. (2009). Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685-96.
34. Koonin, E. V. (1993). A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229, 1165-74.
35. Lutkenhaus, J. & Sundaramoorthy, M. (2003). MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. Mol Microbiol 48, 295-303.
36. Matthews, B. W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-7.
37. Tong, L., Qian, C., Davidson, W., Massariol, M. J., Bonneau, P. R., Cordingley, M. G. & Lagace, L. (1997). Experiences from the structure determination of human cytomegalovirus protease. Acta Crystallogr D Biol Crystallogr 53, 682-90.
38. Lee, M. J., Liu, C. H., Wang, S. Y., Huang, C. T. & Huang, H. (2006). Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochem Biophys Res Commun 342, 744-50.
39. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-47.
40. Hester, C. M. & Lutkenhaus, J. (2007). Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc Natl Acad Sci U S A 104, 20326-31.
41. Vagenende, V., Yap, M. G. & Trout, B. L. (2009). Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48, 11084-96.
42. Golovanov, A. P., Hautbergue, G. M., Wilson, S. A. & Lian, L. Y. (2004). A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126, 8933-9.
43. Scholefield, G., Whiting, R., Errington, J. & Murray, H. (2011). Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol Microbiol 79, 1089-100.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *