帳號:guest(3.140.188.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃日甫
作者(外文):jih fu Huang
論文名稱(中文):均數回歸模型下參數估計之探討
論文名稱(外文):Parameter estimation in mean-reverting model
指導教授(中文):黃裕烈
指導教授(外文):Huang, Yu-Lieh
口試委員(中文):張焯然
李漢星
口試委員(外文):Chang, Jow-Ran
Lee, Han-Hsing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:100071511
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:37
中文關鍵詞:均數回歸係數
外文關鍵詞:OU process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:786
  • 評分評分:*****
  • 下載下載:36
  • 收藏收藏:0
連續時間模型在現代的財務領域的應用廣泛,尤其是隨機過程的使用,對於表達一序列資料的動態行為相當方便。其中均數回歸(mean-reverting)或稱均質反轉的模型的應用更是財務領域中相當重要的一環。本文主要的目的在探討均數回歸模型中的參數估計問題,由Jun Yu(2012)為出發點,其指出使用一般最小平方法(ordinary least squares ; OLS)估計Ornstein-Uhlenbeck process(O-U process)的均數回歸參數時將會產生上方偏誤(up-ward bias),且當均數回歸參數(reversi- on parameter)越遠離零時,其偏誤的形情越劇烈。
本篇文章在放寬參數假設後,嘗試以其他方法估計均數回歸參數。最初先以Euler method和local linearization等離散化 (discretization) 模型方法估計參數,並且加入Aït-Sahalia (1999,2002) 對隨機過程機率分配展開的參數估計方法,之後考慮解決參數估計的偏誤問題,以Indirect Inference法重新估計。最後以綜合比較各種估計方法的效率性並以三十天期商業本票做為無風險利率進行債
券選擇權的實證研究。
Continuous-time models are widely used in modern financial research, especially the stochastic processes; it’s a convenient way to describe the dynamic behavior of se-
quence of data. The mean-reverting model is the one of most important application in stochastic processes. The aim of this paper to investigate the parametric estimation
problem in mean-reverting model. Based on Jun Yu(2012), he argue that using ordinary least squares method to estimate the mean-reversion parameter in O-U process will result in an up-ward bias, and the bias is more severe when
mean-reversion parameter is far away from zero.
This paper tries to relax the parametric assumption in O-U process in Jun Yu(2012)and uses variety ways to re-estimate the mean-reversion parameter in O-U process. At first, we use Euler scheme, local linearization, and method of Aït-Sahalia(1999,2002)to illustrate the bias problem, then consider Indirect Inference to solve
the bias problem in mean-reversion parameter. Finally, we use 30-days commercial
paper as a proxy for short-term interest rate and price bond options.
第一章 研究動機與目的 1
第二章 文獻回顧 3
第三章 研究方法 7
第一節 Euler method 7
第二節 local linearization 9
第三節 封閉解近似法 (Closed form approximation ) 14
第四節 Jackknife法 17
第五節 拔靴法 (bootstrap) 19
第六節 Indirect Inference 21
第四章 模擬結果 24
第五章 實證研究 27
第一節 資料來源與估計結果 27
第二節 樣本外預測力 29
第三節 純粹折價選擇權評價結果 32
結論與未來研究 34
參考文獻 35
Aït‐Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions. The journal of finance 54, 1361-1395.
Aït‐Sahalia, Y. (2002). Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach. Econometrica 70, 223-262.
Ait-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. Review of Financial studies 9, 385-426.
Backus, D., Foresi, S., and Zin, S. (1998). Arbitrage opportunities in arbitrage-free models of bond pricing. Journal of Business & Economic Statistics 16, 13-26.
Bandi, F. M., and Phillips, P. C. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica 71, 241-283.
Canabarro, E. (1995). Wher do One-Factor Interest Rate Models Fail? The Journal of Fixed Income 5, 31-52.
Dai, Q., and Singleton, K. (2003). Term structure dynamics in theory and reality. Review of Financial Studies 16, 631-678.
Driessen, J., Klaassen, P., and Melenberg, B. (2003). The performance of multi-factor term structure models for pricing and hedging caps and swaptions. Journal of Financial and Quantitative Analysis 38, 635-672.
Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics, 1-26.
Elerian, O. (1998). A note on the existence of a closed form conditional transition density for the Milstein scheme. Economics discussion paper, W18.
Gallant, A. R., Hsieh, D., and Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. Journal of Econometrics 81, 159-192.
Gourieroux, C., Monfort, A., and Renault, E. (1993). Indirect inference. Journal of applied econometrics 8, S85-S118.
Hall, P., (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag.
Lo, A. W. (1986). Maximum likelihood estimation of generalized Itô processes with discretely sampled data. National Bureau of Economic Research Cambridge, Mass., USA.
McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica: Journal of the Econometric Society, 995-1026.
Mil'shtein, G. (1979). A method of second-order accuracy integration of stochastic differential equations. Theory of Probability & Its Applications 23, 396-401.
Phillips, P. C. (1972). The structural estimation of a stochastic differential equation system. Econometrica: Journal of the Econometric Society, 1021-1041.
Phillips, P. C., and Yu, J. (2005). Jackknifing bond option prices. Review of Financial Studies 18, 707-742.
Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43, 353-360.
Shao, J., Tu, D., (1995). The Jackknife and Bootstrap. Springer.
Shoji, I., and Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by a local linearization method 1. Stochastic Analysis and Applications 16, 733-752.
Tang, C. Y., and Chen, S. X. (2009). Parameter estimation and bias correction for diffusion processes. Journal of Econometrics 149, 65-81.
Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics 5, 177-188.
Yu, J. (2012). Bias in the estimation of the mean reversion parameter in continuous time models. Journal of Econometrics 169, 114-122.
連春紅, 廖四郎, 李政峰 (2005). 估計與比較連續時間利率模型-台灣商業本票之實證分析 Empirical Comparison of Interest Rate Models: The Case of Taiwan Commercial Paper Rate. 管理評論 24, 29-53.
張焯然 (民96). "財務工程與金融計算: MATLAB的應用," 證基會.
楊奕農 (2009). "時間序列分析:經濟與財務上之應用," 雙葉書廊.台北
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *