|
Aït‐Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions. The journal of finance 54, 1361-1395. Aït‐Sahalia, Y. (2002). Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach. Econometrica 70, 223-262. Ait-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. Review of Financial studies 9, 385-426. Backus, D., Foresi, S., and Zin, S. (1998). Arbitrage opportunities in arbitrage-free models of bond pricing. Journal of Business & Economic Statistics 16, 13-26. Bandi, F. M., and Phillips, P. C. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica 71, 241-283. Canabarro, E. (1995). Wher do One-Factor Interest Rate Models Fail? The Journal of Fixed Income 5, 31-52. Dai, Q., and Singleton, K. (2003). Term structure dynamics in theory and reality. Review of Financial Studies 16, 631-678. Driessen, J., Klaassen, P., and Melenberg, B. (2003). The performance of multi-factor term structure models for pricing and hedging caps and swaptions. Journal of Financial and Quantitative Analysis 38, 635-672. Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics, 1-26. Elerian, O. (1998). A note on the existence of a closed form conditional transition density for the Milstein scheme. Economics discussion paper, W18. Gallant, A. R., Hsieh, D., and Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. Journal of Econometrics 81, 159-192. Gourieroux, C., Monfort, A., and Renault, E. (1993). Indirect inference. Journal of applied econometrics 8, S85-S118. Hall, P., (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag. Lo, A. W. (1986). Maximum likelihood estimation of generalized Itô processes with discretely sampled data. National Bureau of Economic Research Cambridge, Mass., USA. McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica: Journal of the Econometric Society, 995-1026. Mil'shtein, G. (1979). A method of second-order accuracy integration of stochastic differential equations. Theory of Probability & Its Applications 23, 396-401. Phillips, P. C. (1972). The structural estimation of a stochastic differential equation system. Econometrica: Journal of the Econometric Society, 1021-1041. Phillips, P. C., and Yu, J. (2005). Jackknifing bond option prices. Review of Financial Studies 18, 707-742. Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43, 353-360. Shao, J., Tu, D., (1995). The Jackknife and Bootstrap. Springer. Shoji, I., and Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by a local linearization method 1. Stochastic Analysis and Applications 16, 733-752. Tang, C. Y., and Chen, S. X. (2009). Parameter estimation and bias correction for diffusion processes. Journal of Econometrics 149, 65-81. Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics 5, 177-188. Yu, J. (2012). Bias in the estimation of the mean reversion parameter in continuous time models. Journal of Econometrics 169, 114-122. 連春紅, 廖四郎, 李政峰 (2005). 估計與比較連續時間利率模型-台灣商業本票之實證分析 Empirical Comparison of Interest Rate Models: The Case of Taiwan Commercial Paper Rate. 管理評論 24, 29-53. 張焯然 (民96). "財務工程與金融計算: MATLAB的應用," 證基會. 楊奕農 (2009). "時間序列分析:經濟與財務上之應用," 雙葉書廊.台北
|