帳號:guest(3.144.243.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張雅鈞
作者(外文):Chang, Ya-Chun
論文名稱(中文):長壽風險債券評價比較-以EIB Longevity Bond為例
論文名稱(外文):Compare Longevity Bond Valuation Approaches:A Case Study of EIB Longevity Bond
指導教授(中文):蔡子晧
指導教授(外文):Tsai, Tzu-Hao
口試委員(中文):蔡子晧
曾祺峰
林子綾
口試委員(外文):Tsai, Tzu-Hao
Tzeng, Chi-Feng
Lin, Tzu-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:100071508
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:46
中文關鍵詞:長壽風險死亡率風險死亡率債券Lee-Carter 模型拔靴法Canonical valuationWang transform風險中立測度
外文關鍵詞:longevity riskmortality riskmortality bondLee-Carter modelbootstrap1risk neutral measure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:844
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
二十一世紀以來,隨著科技醫療技術日益精進,死亡率疾速下降,全球人口平均壽命逐年提高,使壽險公司面臨龐大的長壽風險,如何解決長壽風險等相關議題,已成當前壽險公司主要目標之一。為了有效降低長壽風險(longevity risk) 的影響,壽險公司常利用金融市場將長壽風險進行證券化,發展為長壽風險衍生性商品。此保險型金融商品標的指數與經由死亡率指數調整的存活率指數所連動,屬於死亡率證券化的延伸商品,如何準確地預測未來死亡率為定價關鍵。
本文將預測死亡率模型以及評價方式分開討論,使用Lee-Carter model搭配extreme value theorem(極值理論)以及bootstrap(拔靴法)兩項預估死亡率模型預測出未來死亡率,再分別搭配Wang transform valuation和canonical valuation兩項評價方式,針對歐洲投資銀行(European Investment Bank)發行EIB/BNP longevity bond(2004)計算其公平價格(fair value)與風險溢酬,提供後續對長壽商品定價之研究參考。
本文的主要貢獻為:(1)依據英國歷史資料,採用Lee-Carter model搭配極值理論以及拔靴法刻劃死亡率的未來路徑與分配。(2)採用Wang transform valuation和canonical valuation針對長壽債券進行計算,並計算出隱含風險溢酬,用以判斷價格的合理性。
The advancement of technology and medical treatment technique leads to the decline of mortality rapidly and the increase of life expectancy of population over the years. Therefore, life insurance companies face a huge longevity risk as issuing relevant insurance contracts. In order to reduce longevity risk, life insurance companies usually use longevity risk securitization in the financial markets, and transform it into longevity risk derivatives. The purpose of securitization is to transfer longevity risk. The underlying index of the insurance-linked securities is associated with the survival index, which is made up and adjusted by the mortality model. Longevity bonds are also classified as mortality-linked derivatives. As a result, to accurately predict future mortality has been pivotal to price those securities.
This article discusses the mortality forecast and bond valuation. First we uses Lee-Carter model with extreme value theorem and bootstrap method to forecast future mortality. Second we apply Wang transform valuation and Canonical valuation to calculate the fair value as well as risk premium of the EIB/BNP longevity bond(2004)issued by European Investment Bank respectively. It could be a reference for the following study of pricing longevity bond.
This paper mainly has two contributions:First of all, on the basis of historical data, we adopt the Lee-Carter model with extreme value theorem and bootstrap method to simulate the future mortality paths and distributions. Second, we calculated the implied market risk premium of longevity bond to evaluate the rationality of longevity bond pricing.
壹、緒論
一、研究目的
二、研究方法
三、研究架構
貳、文獻回顧
第一節 風險證券化
第二節 死亡率預測模型
一、死亡率模型簡介
二、Lee-Carter model
三、Bootstrap method (拔靴法)
第三節 長壽債券定價方法
一、Wang transform valuation
二、Canonical valuation
參、死亡率預估模型與債券評價方法
第一節 死亡率預估模型
一、原始Lee-carter model
二、極值理論Extreme Value theory (EVT)
三、Lee-Carter Model with EVT
四、Bootstrap method
第二節 債券評價方法
一、Wang transform
二、Canonical valuation
肆、實證結果
第一節 長壽債券簡介及資料來源
一、歐洲投資銀行長壽債券簡介 – The EIB/BNP longevity bond
二、資料來源
第二節 死亡率預估結果
一、Lee-Carter EVT
二、拔靴法
第三節 長壽債券評價結果
一、債券定價方式與假設
二、長壽債券定價結果
三、風險溢酬
伍、結論
參考文獻
附錄一:不完備市場定價法
附錄二:瑞士再保死亡率債券簡介 – The Swiss Re VitaⅠmortality bond

1. Bauer, Daniel, Börger, Matthias, and Ruß, Jochen. (2010). On the pricing of longevity-linked securities. Insurance: Mathematics and Economics, 46(1), 139-149.
2. Biffis, E., (2005). Affine processes for dynamic mortality and actuarial valuation. Insurance: Mathematics and Economics, 37, 443-468.
3. Blake, David, and Burrows, William. (2001). Survivor bonds: Helping to hedge mortality risk. Journal of Risk and Insurance, 339-348.
4. Blake, David, Cairns, Andrew, Dowd, Kevin, and MacMinn, Richard. (2006). Longevity bonds: financial engineering, valuation, and hedging. Journal of Risk and Insurance, 73(4), 647-672.
5. Cairns, Andrew. (2005). Longevity bonds and mortality-linked securities.
6. Cairns, Andrew JG, Blake, David, and Dowd, Kevin. (2006). Pricing death: Frameworks for the valuation and securitization of mortality risk. Astin Bulletin, 36(1), 79.
7. Carlstein, E. (1986), The use of subseries methods for estimating the variance of a general statistic from a stationary time series. Annals of Statistics, 14, 1171-1179.
8. Chen, H., and Cox, S.H. (2009). Modeling mortality with jumps: Applications to mortality securitization. Journal of Risk and Insurance, 76(3), 727-751.
9. Chen, H., and Cummins, J David. (2010). Longevity bond premiums: The extreme value approach and risk cubic pricing. Insurance: Mathematics and Economics, 46(1), 150-161.
10. Deng, Yinglu, Brockett, Patrick L, and MacMinn, Richard D. (2012). Longevity/mortality risk modeling and securities pricing. Journal of Risk and Insurance, 79(3), 697-721.
11. Denuit, M., Devolder, P., Goderniaux, A.-C. (2007). Securitization of longevity risk: Pricing survivor bonds with wang transform in the Lee-Carter framework. Journal of Risk and Insurance 74, 87-113.
12. Dowd, K., Blake, D., Cairns, A.J.G., Dawson, P. (2006). Survivor Swaps. The Journal of Risk and Insurance 73, 1-17.
13. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 1-26.
14. Gray, Philip, and Newman, Scott. (2005). Canonical valuation of options in the presence of stochastic volatility. Journal of Futures Markets, 25(1), 4-6.
15. Koissi, M.C., and Shapiro, A.F. (2008). The Lee-Carter model under the condition of variables age-specific parameters. Actuarial Research Conference, Regina, Canada.
16. Künsch, H. R. (1989), The jackknife and the bootstrap for general stationary Observations, Annals of Statistics, 17: 1217-1261.
17. Lee, R. (2000). The Lee-Carter method for forecasting mortality, with various extensions and applications. North american actuarial journal, 4(1), 80-93.
18. Lee, Ronald D, and Carter, Lawrence R. (1992). Modeling and forecasting US mortality. Journal of the American statistical association, 87(419), 659-671.
19. Li, S.H, and C.Y. Ng, Andrew. (2011). Canonical Valuation of Mortality‐Linked Securities. Journal of Risk and Insurance, 78(4), 853-884.
20. Lin, Y., and S.H. Cox, (2005), Securitization of mortality risks in life annuities. Journal of Risk and Insurance, 72, 227-252.
21. Lin, Y., and S.H. Cox, (2008). Securitization of catastrophe mortality risks. Insurance: Mathematics and Economics, 42(2), 628-637.
22. Pickand, J. (1975) Statistical inference using extreme order statistics. Annals of Statistics, 119-131.
23. Martin, M. P. D. (1967) Une application des fonctions de Gompertz a l'etude de l a
fecondite d'une cohort. Population (French Edition), 22, 1085-1096.
24. Milevsky, M.A., and S.D. Promislow. (2001). Mortality derivatives and the option to annuitise. Insurance: Mathematics and Economics, 29, 299–318.
25. Stevens, Ralph. (2009). Annuity decisions with systematic longevity risk.
26. Stutzer, M. (1996). A simple nonparametric approach to derivative security valuation. Journal of Finance, 51, 1633-1652.
27. Tsai, J.T. (2012). "The pricing of mortality-linked contingent claims: an equilibrium approach." 6-8.
28. Wang, S. (1996), Premium calculation by transforming the layer premium density. Astin Bulletin, 26(1), 71-92.
29. Wang, S. (2000), A class of distortion operations for pricing financial and insurance risks. Journal of Risk and Insurance, 67, 15-36.
30. Wang, S. (2002), A universal framework for pricing financial and insurance risks. Astin Bulletin, 32:,213-234.
31. 李冠廷. (2010). 壽險保單準備金之有效存續期間分析─利率風險與死亡率風險. 國立中央大學財務金融所碩士論文
32. 周心怡. (2004). 拔靴法 (Bootstrap) 之探討及其應用. 國立中央大學統計研究所碩士論文
33. 林健隆. (2006). 年金保險長壽風險證券化之研究. 淡江大學保險學系保險經營碩士班碩士論文。
34. 林玉捷(2007). "死亡風險債券評價與死亡風險市場價格. " 國立中正大學財務金融研究所碩士論文
35. 許丁元. (2005). 巨災債券移轉風險之研究. 國立中央大學土木工程研究所碩士論文
36. 陳俊良. (2004). 運用極端值理論建構我國銀行業作業風險模型, 東吳大學企業管理學系碩士論文. 37-42
37. 廖思孟. (2011). 長壽風險債券定價─ 以台灣地區死亡率為例. 清華大學計量財務金融系學位論文。
38. 賴思帆, 余清祥. (2006). 台灣與各國生育率模型之實證與模擬比較. Journal of Population Studies (33), 33-59.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *