|
[1] D. Psaltis, S. R. Quake and C. Yang, “Developing Optofluidic Technology Through The Fusion of Microfluidics and Optics,” Nature, Vol. 442, No. 7101, pp. 381-386, 2006. [2] Y. Fainman, L. P. Lee, D. Psaltis and C. Yang, Optofluidics: Fundamentals, Devices and Applications, McGraw-Hill, 2010. [3] Z. Li, Z. Zhang, A. Scherer and D. Psaltis, “Mechanically Tunable Optofluidic Distributed Feedback Dye Laser,” Optics Express, Vol. 14, No. 22, pp. 10494-10499, 2006. [4] W. Song and D. Psaltis, “Pneumatically Tunable Optofluidic Dye Laser,” Applied Physics Letters Vol. 96, No.8, pp. 081101, 2010. [5] H. Zhu, I. M. White, J. D. Suter, P. S. Dale and X. Fan, “Analysis of Biomolecule Detection with Optofluidic Ring Resonator Sensors,” Optics Express, Vol. 15, No. 15, pp. 9139-9146, 2007. [6] A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, H. Altug, “Integrated Nanoplasmonic-Nanofluidic Biosensors with Targeted Delivery of Analytes,” Applied Physics Letters, Vol. 96, No. 2, pp. 021101, 2010. [7] W. Song and D. Psaltis, “Optofluidic Pressure Sensor Based on Interferometric Imaging,” Optics Letters, Vol. 35, No. 21, pp. 3604-3606, 2010. [8] H. Takiguchi, T. Odake, M. Ozaki, T. Umemura, and K. I. Tsunoda, “Liquid/Liquid Optical Waveguides Using Sheath Flow as a New Tool for Liquid/Liquid Interfacial Measurements,” Applied Spectroscopy, Vol. 57, No. 8, pp. 1039-1041, 2003. [9] J. M. Lim , S. H. Kim , J. H. Choi and S. M. Yang, “Fluorescent Liquid-Core/Air-Cladding Waveguides Towards Integrated Optofluidic Light Sources,” Lab on a Chip, Vol. 8, No. 9, pp. 1580–1585, 2008. [10] K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis and Y. Fainman, “A Microfluidic 2 × 2 Optical Switch,” Applied Physics Letters, Vol. 85, No. 25, pp. 6119-2121, 2004. [11] A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1×4 Switch,” Optics Express, Vol. 16, No. 18, pp. 13499-13508, 2008. [12] J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to- Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE Journal of Selected Topics in Quantumelectronics, Vol. 12, No. 6, pp.1363-1370, 2006. [13] X. Tang, J. Liao, H. Li, L. Zhang, R. Lu, and Y. Liu, “A Novel Scheme for 1×N Optical Power Splitter,” Optics Excess, Vol. 18, No. 2111, pp. 21697-21704, 2010. [14] V. M. N. Passaro, F. Magno, and A. V. Tsarev, “Investigation of Thermo-Optic Effect and Multi-Reflector Tunable Filter/Multiplexer in SOI Waveguides,” Optics Express, Vol. 13, No. 9, pp. 3429-3437, 2005. [15] J. C. Richard Syms, Optical guided wave and devices, McGraw-Hill International(UK) Limited, 1992. [16] T. K. K. Kawano, Introduction to Optical Waveguide Analysis, John Wiley & Sons, 2001. [17] G. T. Reed, Silicon Photonics, Wiley, 2008. [18] M. C. T. B.E.A.Saleh, Fundamentals of Photonics, John Wiley & Sons, 2007. [19] J. V. Roey, J. V. D. Donk and P. E. Lagzasse, “Beam-Propagation Method : Analysis and Assessment,” JOSA, Vol. 71, No. 7, pp. 803-810, 1921. [20] G. R. Hadley, “Transparent boundary Condition for Beam Propagation,” Optics Letters, Vol. 16, No. 9, pp. 624-626, 1991. [21] D. Esinenco, S.D. Psoma, M. Kusko, A. Schneider and R. Muller, “SU-8 Micro-Biosensor Based on Mach-Zehnder Interferometer,” Rev. Adv. Mater. Sci. Vol. 10, No. 4, pp. 295-299, 2005. [22] Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Xu, “Sealing SU-8 Microfluidic Channels Using PDMS,” Biomicrofluidics, Vol. 5, No. 4, pp. 046503, 2011. [23] P. Rabiei, W. H. Steier, “Tunable Polymer Double Micro-Ring Filters,” Photonics Technology Letters, Vol. 15, No. 9, pp. 1255-1257, 2003. [24] A. Borreman, S. Musa, A. A. M. Kok, M.B.J. Diemeer, and A. Driessen, Fabrication of Polymeric Multimode Waveguides and Devices in SU-8 Photoresist Using Selective Polymerization, IEEE/LEOS Benelux Chapter, 2002. [25] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, 2001. [26] CorningR Optical Fiber USA, “CorningR SMF-28TM CPC6 Single-Mode Optical Fiber,” http://www.corningfiber.com. [27] L. F. Hoyt, “New Table of The Refractive Index of Pure Glycerol at 20°C,” Industrial & Engineering Chemistry, Vol. 26, No. 3, pp. 329-332, 1934.
|