帳號:guest(3.16.130.130)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馮秉豪
論文名稱(中文):利用SU-8聚合物製作的光波導方向耦合器之可調式微流體分光器模擬研究
論文名稱(外文):Numerical Study of Microfluidic Variable Power Splitter Based on SU-8 Polymer Directional Waveguide Coupler
指導教授(中文):王立康
口試委員(中文):李明昌
施閔雄
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066545
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:57
中文關鍵詞:光波導方向耦合器可調式分光器SU-8微流體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本論文設計一可調式分光器,使用聚合物光波導方向耦合器,導光層為高分子聚合物SU-8、下披覆層為SiO2,並在方向耦合器上方建置一流體渠道作為上披覆層,藉由調變流體渠道中的流體折射率使得此分光器在輸入TE模態之1550nm波長光時可以得到任意的分光比例。
接著改變元件的結構設計一極化無關的可調式分光器,模擬結果雖然完全達到極化無關可調式分光器,但也已經降低了TE模態與TM模態分光功率的誤差,並且在流體折射率1.46時單一點可以達成極化無關,即TE模態與TM模態之耦合長度相同。
摘要 I
致謝 II
目錄 III
圖目錄 V
表目錄 IX
第一章 序論 1
1-1. 研究背景 1
1-2. 研究動機 2
1-3. 論文架構 3
第二章 理論與原理 4
2-1.光波導基本原理 4
2-2 二維光波導結構之波動方程 5
2-3.光方向耦合器原理 9
2-4.模擬軟體簡介 12
2-5.光束傳播法基本原理 12
2-6.SU-8聚合物介紹 14
2-7.製程原理介紹 16
2-7.1電漿強化型化學氣相沉積 16
2-7.2 微影技術 19
第三章 模擬與分析 27
3-1.通道波導結構分析 27
3-2.光方向耦合器設計 29
3-3.方向耦合器之耦合效率模擬 32
3-4.環境容忍度模擬與分析 38
3-5.極化無關方向耦合器設計 40
第四章 結論 52
參考文獻 54
[1] D. Psaltis, S. R. Quake and C. Yang, “Developing Optofluidic Technology Through The Fusion of Microfluidics and Optics,” Nature, Vol. 442, No. 7101, pp. 381-386, 2006.
[2] Y. Fainman, L. P. Lee, D. Psaltis and C. Yang, Optofluidics: Fundamentals, Devices and Applications, McGraw-Hill, 2010.
[3] Z. Li, Z. Zhang, A. Scherer and D. Psaltis, “Mechanically Tunable Optofluidic Distributed Feedback Dye Laser,” Optics Express, Vol. 14, No. 22, pp. 10494-10499, 2006.
[4] W. Song and D. Psaltis, “Pneumatically Tunable Optofluidic Dye Laser,” Applied Physics Letters Vol. 96, No.8, pp. 081101, 2010.
[5] H. Zhu, I. M. White, J. D. Suter, P. S. Dale and X. Fan, “Analysis of Biomolecule Detection with Optofluidic Ring Resonator Sensors,” Optics Express, Vol. 15, No. 15, pp. 9139-9146, 2007.
[6] A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, H. Altug, “Integrated Nanoplasmonic-Nanofluidic Biosensors with Targeted Delivery of Analytes,” Applied Physics Letters, Vol. 96, No. 2, pp. 021101, 2010.
[7] W. Song and D. Psaltis, “Optofluidic Pressure Sensor Based on Interferometric Imaging,” Optics Letters, Vol. 35, No. 21, pp. 3604-3606, 2010.
[8] H. Takiguchi, T. Odake, M. Ozaki, T. Umemura, and K. I. Tsunoda, “Liquid/Liquid Optical Waveguides Using Sheath Flow as a New Tool for Liquid/Liquid Interfacial Measurements,” Applied Spectroscopy, Vol. 57, No. 8, pp. 1039-1041, 2003.
[9] J. M. Lim , S. H. Kim , J. H. Choi and S. M. Yang, “Fluorescent Liquid-Core/Air-Cladding Waveguides Towards Integrated Optofluidic Light Sources,” Lab on a Chip, Vol. 8, No. 9, pp. 1580–1585, 2008.
[10] K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis and Y. Fainman, “A Microfluidic 2 × 2 Optical Switch,” Applied Physics Letters, Vol. 85, No. 25, pp. 6119-2121, 2004.
[11] A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1×4 Switch,” Optics Express, Vol. 16, No. 18, pp. 13499-13508, 2008.
[12] J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to- Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE Journal of Selected Topics in Quantumelectronics, Vol. 12, No. 6, pp.1363-1370, 2006.
[13] X. Tang, J. Liao, H. Li, L. Zhang, R. Lu, and Y. Liu, “A Novel Scheme for 1×N Optical Power Splitter,” Optics Excess, Vol. 18, No. 2111, pp. 21697-21704, 2010.
[14] V. M. N. Passaro, F. Magno, and A. V. Tsarev, “Investigation of Thermo-Optic Effect and Multi-Reflector Tunable Filter/Multiplexer in SOI Waveguides,” Optics Express, Vol. 13, No. 9, pp. 3429-3437, 2005.
[15] J. C. Richard Syms, Optical guided wave and devices, McGraw-Hill International(UK) Limited, 1992.
[16] T. K. K. Kawano, Introduction to Optical Waveguide Analysis, John Wiley & Sons, 2001.
[17] G. T. Reed, Silicon Photonics, Wiley, 2008.
[18] M. C. T. B.E.A.Saleh, Fundamentals of Photonics, John Wiley & Sons, 2007.
[19] J. V. Roey, J. V. D. Donk and P. E. Lagzasse, “Beam-Propagation Method : Analysis and Assessment,” JOSA, Vol. 71, No. 7, pp. 803-810, 1921.
[20] G. R. Hadley, “Transparent boundary Condition for Beam Propagation,” Optics Letters, Vol. 16, No. 9, pp. 624-626, 1991.
[21] D. Esinenco, S.D. Psoma, M. Kusko, A. Schneider and R. Muller, “SU-8 Micro-Biosensor Based on Mach-Zehnder Interferometer,” Rev. Adv. Mater. Sci. Vol. 10, No. 4, pp. 295-299, 2005.
[22] Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Xu, “Sealing SU-8 Microfluidic Channels Using PDMS,” Biomicrofluidics, Vol. 5, No. 4, pp. 046503, 2011.
[23] P. Rabiei, W. H. Steier, “Tunable Polymer Double Micro-Ring Filters,” Photonics Technology Letters, Vol. 15, No. 9, pp. 1255-1257, 2003.
[24] A. Borreman, S. Musa, A. A. M. Kok, M.B.J. Diemeer, and A. Driessen, Fabrication of Polymeric Multimode Waveguides and Devices in SU-8 Photoresist Using Selective Polymerization, IEEE/LEOS Benelux Chapter, 2002.
[25] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, 2001.
[26] CorningR Optical Fiber USA, “CorningR SMF-28TM CPC6 Single-Mode Optical Fiber,” http://www.corningfiber.com.
[27] L. F. Hoyt, “New Table of The Refractive Index of Pure Glycerol at 20°C,” Industrial & Engineering Chemistry, Vol. 26, No. 3, pp. 329-332, 1934.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *