帳號:guest(52.14.17.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張鴻元
論文名稱(中文):利用摻釹釔鋁石榴石雷射激發脈衝式光參震盪器產生黃光雷射
論文名稱(外文):Nd:YAG laser pumped pulsed optical parametric oscillator for yellow light laser generation
指導教授(中文):楊尚達
口試委員(中文):彭隆瀚
林彥穎
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066542
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:38
中文關鍵詞:光參震盪器黃光雷射
相關次數:
  • 推薦推薦:0
  • 點閱點閱:869
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
在本論文中,我們推導了在低增益條件下的近似增益解析解,可以縮短在模擬光參震盪器時所花費的時間。我們也介紹了脈衝式光參震盪器的運作機制,與其光腰半徑與共振腔長的設計方式。能夠產生波長532奈米雷射的途徑有很多種,我們舉了六個達成方式來分析,由分析結果,我們選擇利用串聯倍頻,光參震盪器,倍頻的方式來達成,並且用其進行相關的生醫實驗。我們利用不同波長打入待測物,待測物會因熱膨脹而產生超聲波訊號,由於不同波長有著不同的吸收率,而產生不同的超聲波訊號大小,進而分辨待測物種類。最後,生醫實驗失敗的可能原因是由於波長選用範圍太接近所造成。
In this thesis, we derived the analytic solution of continuous-wave parametric gain under the low gain and depleted pump conditions. We also numerically analyzed the nanosecond pulse optical parametric oscillator (OPO), and the way how to calculate the efficiency and chose the suitable beam waist and cavity length. We used a Nd:YAG pump laser and three periodically poled lithium niobate (PPLN) crystals to implement the cascaded second-harmonic generation (SHG)-OPO-SHG processes to generate 4 kHz repetition rate, 7.5 mW yellow laser at 584 nm with 1.54% power fluctuation. The yellow laser was used in on biomedical experiment. The biomedical experiment has to measure the photoacoustic signal of the object by using three different wavelengths. When laser input an object, it creates thermal expansion and we can use the ultrasonic sensor to receive the photoacoustic signal of vibration that thermal expansion makes. The absorption of the objects determine the photoacoustic signal energy, and we can use it to separate sort of the objects. Finally, the biomedical experiment has fail because the interval of different wavelengths is too close to distinguish the different absorption.
CHAPTER 1: INTRODUCTION
1.1 Motivation
1.2 Nonlinear frequency mixing
1.3 Quasi-phase-matching

CHAPTER 2: THEORY OF OPTICAL PARAMETRIC OSCILLATION
2.1 Coupled-wave equations
2.2 Continuous wave optical parametric oscillation
2.3 Nanosecond pulsed- optical parametric oscillation

CHAPTER 3: DESIGN OF A NONLINEAR YELLOW LASER
3.1 Analysis of a nonlinear yellow laser generation
3.2 Cavity design

CHAPTER 4: EXPERIMENTAL RESULTS
4.1 Experimental setup
4.2 Experimental results and discussions
4.3 Conclusion
1.Hao F. Zhang, Konstantin Maslov, George Stoica, and Lihong V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nature Biotechnology, 24(7), 848-851 (2006).
2.K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett, 33(9), 929-931 (2008).
3.J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918-1939 (1962).
4.M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631-2654 (1992).
5.H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Appl. Phys. 45(2), 766-769 (2006).
6.L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21(8), 591-593 (1996).
7.S. E. Harris, “Tunable optical parametric oscillators,” IEEE XPLORE 57(12), 2096-2113 (1969)
8.A. Yariv, and W. H. Louisell, “Theory of the optical parametric oscillator,” IEEE J. of Quantum of Electronics 2(9), 418-424, (1966)
9.Kogelnik, H., “Coupled-wave theory of distributed feedback lasers,” Appl. Phys. 43(5), 2327-2335 (1972).
10.A. C. Chiang, T. D. W, Y. Y. Lin, C. W. Lau, Y. H. Chen, B. C. Wong, Y. C. Huang “Pulsed optical parametric generation, amplification, and oscillation in monolithic periodically poled lithium niobate crystals,” IEEE J. Quantum Electron, 40(6), 791-799 (2004).
11.Stephen J. Brosnan, and Robert L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron, 15(6), 415-431, (1979).
12.A. C. Chiang, Y. C. Huang, Y. W. Fang, and Y. H. Chen, “Compact, 220-ps visible laser employing single-pass, cascaded frequency conversion in monolithic periodically poled lithium niobate,” Opt. Lett. 26(2), 66-68, (2001).
13.Won-Kyu Lee, Chang Yong Park, Dai-Hyuk Yu, Sang Eon Park, Sang-Bum Lee, and Taeg Yong Kwon, “Generation of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laser,” Opt. Express, 19(18), 17453-17461 (2011).
14.O.B. Jensen, M. Bruun-Larsen, O. Balle-Petersen, T. Skettrup, “Yellow nanosecond sum-frequency generating optical parametric oscillator using periodically poled LiNbO3,” Appl. Phys. 91(1), 61-63 (2008).
15.Y. C. Huang, A. C. Chiang, Y. Y. Lin, and Y. W Fang, “Optical parametric generation covering the sodium D1, D2 lines from a 532-nm pumped periodically poled lithium niobate (PPLN) crystal with ionic-nonlinearity enhanced parametric gain,” IEEE J. Quantum Electron. 40(6), 791-799 (2002).
16.R. Y. Tu, Y. Y. Lin, S. T. Lin, T. D. Wang, C. Y. Chien, and Y. C. Huang, “Sodium-yellow laser generation from a three-stage (2) process in an optical parametric oscillator,” (CLEO/QELS 2009), VOLS 1-5, 2965-2966 (2009).
17.Hidetsugu YOSHIDA, Hisanori FUJITA, Masahiro NAKATSUKA, Masashi YOSHIMURA, Takatomo SASAKI1, Tomosumi KAMIMURA and Kunio YOSHIDA, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Japanese Journal of Appl. Phys. 45(2), 766-769 (2006).
18.Vittorio Magni, Giulio Cerullo and Sandro De Silvestri, “ABCD matrix analysis of propagating of gaussian beams through Kerr media,” Optics Communication, 96(4), 348-355 (1993).
19.S. Y. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30(18), 2451-2453 (2005).
20.Tyler Harrison, Janaka C. Ranasinghesagara, Huihong Lu, Kory Mathewson, Andrew Walsh, and Roger J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041-22046 (2009).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *