帳號:guest(18.188.212.54)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡瑋義
論文名稱(中文):利用阿基米德螺旋達成選擇性表面電漿光鉗與光轉子之探討
論文名稱(外文):Selective Optical Trapping/Rotation Using Plasmonic Archimedes Spiral
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen-Bin
口試委員(中文):黃承彬
楊雅棠
李柏璁
口試委員(外文):Huang, Chen-Bin
Yang, Ya-Tang
Lee, Po-Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066536
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:53
中文關鍵詞:光學鑷子表面電漿捕捉
外文關鍵詞:optical tweezersplasmonic trapping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:461
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
在本論文之第一部份,利用有限元素法分析阿基米德螺旋結構所激發的表面電漿子產生超聚焦現象與光漩渦現象,探討這兩種表面電漿子現象對於捕捉與旋轉微小粒子的可行性。產生這些現象有兩個主要因素,一為電漿子螺旋元件的幾何結構,另一個為激發此元件光源的圓偏振態旋向。表面電漿子能將區域內光場增強以及將光場侷限在次波長尺度內,此兩特性與傳統光學鑷子使用聚焦的雷射光捕捉微小粒子並加以操縱的概念雷同,因此利用傳統光學鑷子的原理去分析阿基米德螺旋結構。

本論文之第二部分,我們於實驗上,利用熱蒸鍍的方式鍍製金屬薄膜,再以聚焦離子研磨出阿基米德螺旋微結構於蓋玻片基底上。實驗量測方面利用商用光學顯微鏡搭配自行架設的激發樣品之光路,並使用CCD觀測微小粒子是否受到光漩渦與超聚焦的效應,因而產生被捕捉與旋轉的現象,最後將CCD所取得的影像結果與模擬數據做比較。實驗所得到的結果與模擬的結果相似,從而可證實電漿子螺旋元件的光聚焦現象與光漩渦現象的正確性。
In the first part of this work, we use finite element method to simulate the optical vortex and super-focus phenomenon within an Archimedes spiral. There are two main factors that influence these phenomena: One is the geometrical charge determined by the geometry of plasmonic spiral device, the other is the spin angular momentum of the incident plane wave. We analyze the two kinds of surface plasmonic phenomenon for trapping particle and rotating particle. Traditionally, optical tweezer use focused laser beam to trap particle and manipulate. Plasmonic can enhance and localize light field which is similar to optical tweezers principle. Therefore, we use that concept to analyze Archimedes spiral structure.
In the secondary part of this work, our samples are fabricated using thermal evaporation to deposit a 200 nm film over a glass substrate. Then we make micro structure of plasmonic spiral device by using focused ion beam (FIB). In the experimental process, we use optical microscope system with a CCD (charge-coupled device) to observe the motion of micro-particles. Finally, we compare video result with simulation result. The simulation result is matching the experimental result which we observe.
摘要
Abstract
目錄
圖目錄
第一章 序言
第二章光學鑷子與表面電漿捕捉的理論模型與介紹
2.1光學鑷子理論模型
2.2表面電漿捕捉理論模型
2.3 有限元素法(Finite element method, FEM)的介紹[31]
2.4 表面電漿捕捉的模擬
第三章 樣品製程與微粒子捕捉與旋轉實驗
3.1 阿基米德螺旋元件的樣品製程
3.2 表面電漿捕捉與旋轉實驗步驟
3.3 表面電漿捕捉與旋轉實驗量測結果與分析
第四張 結論與未來展望
參考文獻
[1] R.W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," in Philosophical Magazine 4, p. 396-402(1902).
[2] U. Fano," Some theoretical considerations on anomalous diffraction grating," Physical Review, 1936. 50(6): p. 573-573.
[3] U. Fano," On the anomalous diffraction gratings II," Physical Review, 1937. 51(4): p. 288-288.
[4] U. Fano," On the theory of the intensity anomalies of diffraction," Annalen Der Physik, 1938. 32(5): p. 393-443.
[5] U. Fano," The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, 1941. 31(3): p. 213-222.
[6] R.H. Ritchie," PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS," Physical Review, 1957. 106(5): p. 874-881.
[7] H.A. Atwater," The promise of plasmonics," Scientific American, 2007. 296(4): p. 56-63.
[8] S.A. Maier, P.G. Kik, and H.A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, 2002. 81(9): p. 1714-1716.
[9] S.A. Maier, P.G. Kik, and H.A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Physical Review B, 2003. 67(20).
[10] S.A. Maier, M. D. Friedman, P. E. Barclay and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Applied Physics Letters, 2005. 86(7).
[11] D. Woolf, M. Loncar, and F. Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Optics Express, 2009. 17(22): p. 19996-20011.
[12] C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han and G. C. Guo, "Broadband integrated polarization beam splitter with surface plasmon," Optics Letters, 2011. 36(18): p. 3630-3632.
[13] J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner and B. Hecht, "Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits," Physical Review B, 2009. 79(19).
[14] S.A.Maier, Plasmonics: Fundamentals and Application(Springer-verlag,20007)
[15] Nerkararyan, K.V., Nerkararyan S.K. , and Bozhevolnyi S.I., "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons, " Optics Letters, 2011. 36(22): p. 4311-4313.
[16] M.Kauranen, and A.V. Zayats, "Nonlinear plasmonics, " Nature Photonics, 2012. 6(11): p. 737-748.
[17] T. Hanke, G. Krauss, D. Trautlein, B. Wild, R. Bratschitsch and A. Leitenstorfer. "Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle near-Infrared Pulses," Physical Review Letters 103, no. 25 (2009).
[18] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, "OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES," Optics Letters, 1986. 11(5): p. 288-290.
[19] G. Volpe, R. Quidant, G. Badenes and D. Petrov, "Surface plasmon radiation forces," Physical Review Letters, 2006. 96(23).
[20] Righini, Maurizio, Volpe Giovanni, Girard Christian, Petrov Dmitri and Quidant Romain, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Physical Review Letters, 2008. 100(18).
[21] Mathieu L Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, 2011. 5(6): p. 349-356.
[22] Lina Huang and O.J.F. Martin, "Reversal of the optical force in a plasmonic trap," Optics Letters, 2008. 33(24): p. 3001-3003.
[23] Shuangyang Yang, Weibin Chen, Robert L. Nelson and Qiwen Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens, " Optics Letters, 2009. 34(20): p. 3047-3049.
[24] 光學嵌住之理論探討, 黃均正、吳崇安,邱爾德, 民國89年10月 物理雙月刊二卷五期 P485-493.
[25] A. Ashkin, "ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE, "Physical Review Letters, 1970. 24(4): p. 156-159.
[26] A. Ashkin and J.M. Dziedzic, "OBSERVATION OF RADIATION-PRESSURE TRAPPING OF PARTICLES BY ALTERNATING LIGHT-BEAMS," Physical Review Letters, 1985. 54(12): p. 1245-1248.
[27] Kai Wang, Ethan Schonbrun, Paul Steinvurzel and Kenneth B. Crozier, "Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink," Nature Communications, 2011. 2.
[29] Aleksandar D. Rakic, A. B. Djurisic, J. M. Elazar and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, 1998. 37(22): p. 5271-5283.
[30] E.D.Palik, Handbook of optical constants of solids (1985)
[31] 有限元素法在電機工程的應用, 黃昌圳 , 全華科技圖書公司。
[32] O.C Zienkiewicz and K. Morgan, Finite Elements Approximation, John Wiley and Sons, Inc., 1983
[33] J.jin, The Finite Element Method in Electromagnetrics, 2nd Ed., John Wiely and Sons, Inc., 2002

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *