帳號:guest(3.14.252.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李仲洋
論文名稱(中文):矽晶太陽能電池之研究:使用氧化法形成背面氧化鋁鈍化層
論文名稱(外文):Study of Crystalline Silicon Solar Cell:Formation of Al2O3 Passivation Layer by Oxidation Method
指導教授(中文):王立康
口試委員(中文):張正陽
巫勇賢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066535
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:57
中文關鍵詞:氧化鋁鈍化太陽能電池
相關次數:
  • 推薦推薦:0
  • 點閱點閱:432
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對於太陽能電池來說,表面缺陷為整體缺陷的重要來源,本實驗在想藉著沉積鈍化層,來達到提高少數載子生命周期的目標。而氧化鋁在一些文獻中指出有著良好的鈍化效果,以ALD沉積之氧化鋁帶有負電荷,對P型矽基板可以在背面有著良好的鈍化效果。
氧化鋁的沉積方式也很多樣,可以由ALD、PECVD、濺鍍...等方式成長,我們想嘗試新的方法,用氧化法在矽表面生長出一層氧化鋁。並量測其少數載子生命周期是否有增加來作為鈍化效果的依據。
最後將此種方式生長之氧化鋁層作為鈍化層,製作PERL結構之太陽能電池,並量測各項參數觀察是否有鈍化之功效。
圖目錄 V
表目錄 VIII
第1章 序論 1
1.1 太陽能電池發展 1
1.2 文獻回顧 2
1.3 研究目的 4
1.4 論文大綱 4
第2章 基本原理 6
2.1 太陽能電池基本原理 6
2.2 太陽能電池等效電路 10
2.3 太陽能電池參數特性 13
2.4 太陽能電池的損失 15
2.5 氧化原理 17
2.6 金屬氧化層半導體電容(MIS Capacitor) 18
第3章 實驗方法與流程 22
3.1 實驗架構 22
3.2 太陽能電池製程步驟 22
3.3 C-V測試片之製程 33
第4章 實驗結果與討論 35
4.1 鈍化層之討論 35
4.2 太陽能電池參數量測 48
第5章 結論 52
參考文獻 54
[1] J. Zhao, A. Wang, M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials & Solar Cells , vol. 65 , pp. 429-435, 2001.
[2] A.W. Smith,A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 29, pp. 37-49, 1993.
[3] Christopher E. Valdivia , Eric Desfonds , Denis Masson , Simon Fafard , Andrew Carlson , John Cook , Trevor J. Hall , Karin Hinzer ,, “Optimization of antireflection coating design for multi-junction solar cells and concentrator systems,” SPIE 7099,Photonics North 2008, pp. 709915, 2008.
[4] 黃建昇, “結晶矽太陽電池發展現況,” 工業材料, 編號 203期, 92年11月.
[5] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden and W. M. M. Kessels, “Improved anisotropic etching process for industrial texturing of silicon solar cells,” Solar Energy Materials and Solar Cells , vol. 57, pp. 179-188, 1999.
[6] C. Martinet,V. Paillard,A. Gagnaire,J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” Journal of Non-Crystalline Solids, vol. 216, pp. 77-82, 1997.
[7] M. Cid *, N. Stem, C. Brunetti, A.F. Beloto, C.A.S. Ramos,, “Improvements in anti-reflection coatings for high-efficiency silicon solar cells,” Surface and Coatings Technology, vol. 106, pp. 174-120, 1998.
[8] Daniel Macdonald, Andres Cuevas, Atsushi Kinomura and Yukihiro Nakano, “Phosphorus gettering in multicrystalline silicon studied by neutron activation analysis,” Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE , pp. 285-288, 2002 .
[9] S. Glunz, “Review article high-efficiency crystalline silicon solar cells,” Hindawi Publishing Corporation Advances in OptoElectronics , vol. 2007, 2007.
[10] Armin G Aberl, “Surface passivation of crystalline silicon solar cells: a review,” Progress in Photovoltaics: Research and Applications , vol. 8, pp. 441–561, 2000.
[11] B. Sopori, M.I. Symco, R. Reedy, K. Jones,and R. Matson, “Mechanism(s) of hydrogen diffusionin silicon solar cells during forming gas anneal,” Photovoltaic Specialists Conference, 1997, Conference Record of the Twenty-Sixth IEEE , pp. 25-30, 1997 .
[12] Stefan Dauwe. Jan Schmidt, and Rudolf Hezel, “Very low surface recombination velocities on p-and n-type silicon wafers passivated with hydrogenated amorphous silicon films,” Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE , pp. 1246-1249, 2002 .
[13] M. Z. Burrows, U. K. Das, R. L. Opila, S. De Wolf, R. W. Birkmire, “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , vol. 26 , pp. 683 - 687 , 2008 .
[14] Hikaru Kobayashi Asuha, Osamu Maida, Masao Takahashi, and Hitoo Iwasa, “Nitric acid oxidation of si to form ultrathin silicon dioxide layers with a low leakage current density,” Journal of Applied Physics , vol. 94 , pp. 7328 - 7335, 2003 .
[15] Glunz, S.W.Biro, D. ; Rein, S. ; Warta, W., “Field-effect passivation of the SiO2 Si interface,” Journal of Applied Physics , vol. 86 , pp. 683 - 691 , 1999 .
[16] S. Dauwe, L. Mittelst¨adt, A. Metz, and R. Hezel, “Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells,” Progress in Photovoltaics: Research and Applications , vol. 10 ,pp. 235–294, 2002.
[17] Thomas Lauinger, Jan Schmidt, Armin G. Aberle, and Rudolf Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Applied Physics Letters , vol. 68 , pp. 1232-1234, 1996.
[18] J. Schmidt, A. Merkle, R. Brendel, B. Hoex,M. C. M. v. de Sanden, and W. M. M. Kessels,, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics: Research and Applications , vol. 16 , pp. 461–466, 2008.
[19] B.L. Sopori , X. Deng , J.P. Benner , A. Rohatgi , P. Sana , S.K. Estreicher , Y.K. Park , M.A. Roberson, “Hydrogen in silicon: A discussion of diffusion and passivation mechanisms,” Solar Energy Materials and Solar Cells , vol. 41–42 , pp. 159-169, 1996.
[20] B.L. Sopori , X. Deng , J.P. Benner , A. Rohatgi , P. Sana , S.K. Estreicher , Y.K. Park , M.A. Roberson “Hydrogen in silicon: A discussion of diffusion and passivation mechanisms,” Solar Energy Materials and Solar Cells , vol. 41-42 , pp. 159-169, 1996.
[21] M.-T. Wu, “Preparation of nanoporous anodic alumina by anodization of aluminum,” Department of Materials Science and Engineering National Cheng Kung University, 2005.
[22] J. H. R. Siegel, Thermal radiation heat transfer, New York: MacGrawHill, 1972.
[23] M. A. GREEN, SOLAR CELLS Operating Principles,Technology and System Applications, Prentice-Hall, 1982.
[24] Sah, R.L-Y. , Noyce, Robert N. , Shockley , William “Carrier generation and recombination in p-n junctions and p-n junction characteristics,” Proceedings of the IRE , vol. 45 , pp. 1228 - 1243, 1957.
[25] J. P. O'Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences , pp. 511-543 , 1970.
[26] Michael Rauer, Robert Woehl, Karola Rühle, Christian Schmiga, Martin Hermle, Matthias Hörteis, and Daniel Biro, “Aluminum alloying in local contact areas on dielectrically passivated rear surfaces of silicon solar cells,” Electron Device Letters, IEEE , vol. 32 , pp. 916-918, 2011 .
[27] S. Gatz, K. Bothe, J. Müller, T. Dullweber, R. Brendel, “Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells,” Energy Procedia , vol. 8, pp. 318–323, 2011.
[28] A. Roy Chowdhuri , C. G. Takoudis , R. F. Klie and N. D. Browning, “Metalorganic chemical vapor deposition of aluminum oxide on Si: Evidence of interface SiO2 formation,” Applied Physics Letters , vol. 80 , pp. 4241 - 4243, 2002 .
[29] A. Richter , S. Henneck , J. Benick , M. Horteis , M. Hermle and S.W. Glunz, “Firing stable AL2O3/SiNx layer stack passivation for the front side boron emitter of n-type silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, 2010.
[30] Sebastian Gatz, Thorsten Dullweber, and Rolf Brendel, “Evaluation of series resistance losses in screen-printed solar cells with local rear contacts,” Photovoltaics, IEEE Journal , vol. 1 , pp. 37-42, 2011 .
[31] Jiun-Hong Lai, Ajay Upadhyaya, Member, IEEE, Saptharishi Ramanathan, Arnab Das, Keith Tate,Vijaykumar Upadhyaya, Aditya Kapoor, Chia-Wei Chen, and Ajeet Rohatgi, Fellow, IEEE, “High-efficiency large-area rear passivated silicon solar cells with local Al-BSF and screen-printed contacts,” Photovoltaics, IEEE Journal of , vol. 1 , pp. 16 - 21, 2011 .
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *